太湖典型湖区中胶体有机碳浓度的时空变化

张战平1,朱广伟2*,孙小静2,池俏俏2
1. 华北水利水电学院资源与环境学院, 郑州 450011
2. 中国科学院南京地理与湖泊研究所, 南京 210008

摘要: 利用切向流超滤技术研究了太湖梅梁湾与贡湖湾2个不同生态类型的典型湖区在不同季节胶体有机碳(COC)的浓度变化, 并同时观测了浮游植物叶绿素(a)、悬浮物(SS)及总磷(TP)等背景指标。结果表明, 作为蓝藻型湖水, 其COC浓度在春季、秋季最高, 冬季最低; 作为草型湖水的贡湖湾, 其COC浓度在春季最低, 冬季最高; 太湖梅梁湾与贡湖湾COC浓度的差异和季节变化有关, 贡湖湾COC浓度高于梅梁湾, 差异为一年中最大; 太湖水体COC浓度和Chla浓度显著正相关(r = 0.81, p = 0.015), 说明浮游植物的生命活动是太湖水体COC的一个重要来源。

关键词: 太湖; 胶体有机碳; 时空变化; 来源; 切向流超滤

Temporal and spatial changes of the content of colloidal organic carbon in Taihu Lake, China

Zhang Zhanping1, Zhu Guangwei2*, Sun Xiaoqing2, Chi Qiaojia2
1. College of Resources and Environment, North China Institute of Water Conservancy and Hydroelectric Power, Zhengzhou 450011
2. Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008

Received 5 September 2007; received in revised form 7 March 2008; accepted 28 May 2008

Abstract: In two different ecological zones of Taihu Lake-Meiliang Bay and Gonghu Bay-the content of colloidal organic carbon (COC) in different seasons was monitored using cross-flow ultrafiltration. Related water quality variables such as phytoplankton community, chlorophyll a (Chla) and suspended solids (SS) were also observed. The COC content in Meiliang Bay, an algae type zone of Taihu Lake, were the highest in summer and the lowest in autumn. But the COC content in Gonghu Bay, a grass type zone of Taihu Lake, were the highest in autumn and the lowest in winter. The differences in COC contents between the two lake zones changed with the seasons. Of the four seasons, the difference in summer was the most significant. The results also showed that concentrations of COC were significantly positively correlated with concentrations of Chla (r = 0.81, p = 0.015), which meant that primary productivity of phytoplankton was a key source influencing COC in Taihu Lake.

Keywords: Taihu Lake; colloidal organic carbon; temporal and spatial changes; source; cross-flow ultrafiltration

1 引言(Introduction)

太湖是我国长江中下游地区著名的五大淡水湖之一, 位于30°55′4”~31°32′58”N, 119°52′32”~120°36′10”E 之间, 地跨苏、浙、沪三市, 太湖南北长65.5km, 东西平均宽34km, 最宽处达56km, 实际水域面积2338.1km², 平均水深1.9m, 最大水深2.6m, 是一个典型的大型浅水湖泊 (秦伯强等, 2004)。由于太湖湖底地形十分平坦, 平均坡度为0°0′19.66″, 加上水坡被众多小山阻隔, 使得水流交换缓慢, 水量交换系数仅为1.18, 远小于鄱阳湖(6.40), 洞庭湖(18.30), 洪泽湖(10.40) 和巢湖(2.17) (黄应伟, 2000)。另外, 太湖处于亚热带季风气候区, 水热条件充沛, 四季分明。因此, 太湖水体

基金项目: 国家自然科学基金(No. 40673078, 40772165), 华北水利水电学院高层次人才科研启动项目资助(No. 200715)

Supported by the National Natural Science Foundation of China(No. 40673078, 40772165) and the Startup Project of High-level Talent of North China Institute of Water Conservancy and Hydroelectric Power(No. 200715)

作者简介: 张战平(1973—), 男, 讲师, 研究方向: 水环境微生物学, E-mail: shanzhenghang@126.com; *通讯作者(联系作者), E-mail: gwzh@niglas.ac.cn

Biography: ZHANG Zhanping(1973—), male, lecturer(P. H. D.), E-mail: shanzhenghang@126.com; *Corresponding author, E-mail: gwzh@niglas.ac.cn
中水质参数及水环境要素在时间及空间上有着较大的差异（朱广伟，2008），了解太湖水体有关参数的时空分布特征对认识和评价其水资源、水环境状况有着重要的意义。

天然水体中的胶体有着重要的环境意义，近年来已引起水环境科学界的广泛关注（Gustafson et al., 1997; Honeyman et al., 1989; Zhao et al., 2003; Dai et al., 2001; Guo et al., 1994; Martin et al., 1995; 赵新淮等，2001）。有研究表明，太湖水体中相当一部分磷及痕量金属与胶体相互作用后以胶体态存在（孙小静等，2006; 张战平等，2007）。而对太湖春季水体中的胶体有机碳（COC）浓度的初步研究发现，与海洋、海湾及河口等水体相比，其浓度相对较高，并且在春季节不连续型湖区（梅梁湾和贡湖）的COC浓度空间差异明显（张战平等，2006a）。那么，随着季节的变化，这种空间差异有何变化？同一湖区的胶体浓度随季节将呈现怎样的变化？本研究中将针对这些问题——探讨，以期进一步了解太湖水体胶体浓度的时空分布特点，这对于认识太湖水体中的有机碳和有关痕量金属的环境行为以及探讨太湖高营养化的发生机理都将有着重要的科学价值。

2 材料与方法（Materials and methods）

分别于2005-07-15（夏季）、2005-10-13（秋季）和2006-01-09（冬季）在中国科学院太湖湖泊生态系统研究站梅梁湾1号点（31.51317° N, 120.19067° E）和贡湖湾14号点（31.43511° N, 120.37691° E）采集表层水样（水面下20 cm），每次采样时观察到的湖水特征如表1所示。每次采样均设3个平行。样品的采集与处理方法、切向超滤过程参文献（张战平等，2006a）。悬浮物（SS）与叶绿素a（Chl）的测量方法参见文献（张战平等，2006b）。浮游动植物的密度采用显微镜计数法测定，然后再做生物量（湿重）。水样经孔径为1 μm聚丙烯滤膜过滤后的部分即超滤液中的有机碳为总溶解有机碳（DOC，<1 μm），超滤液中通过分子量截留为1 k（相当于孔径为1 nm）的超滤膜的部分即超滤液中的有机碳为真溶解有机碳（UOC，<1 k），未通过超滤膜的部分即为胶体浓缩液。各部分水样的有机碳均用 Shimadzu 公司生产的TOC-5000A 型总有机碳分析仪进行测定。原水样中的胶体有机碳（COC）指通过孔径为1 μm的滤膜而被1 kD的超滤膜截留的有机碳，其浓度可由以下公式计算而得（Dai et al., 2001）：

$$ C_r = \left(C_o - C_w \right) / F $$

式中，C_r为原水样中胶体有机碳浓度；C_o为浓缩液中有机碳浓度；C_w为超滤液中有机碳浓度；F为浓缩系数（超滤液体积浓缩体积）。文中2005-04-15（春季）的数据引自文献（张战平等，2006a）。

表1 采样时的气象与湖水特征

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>梅梁湾</td>
<td>微风；水体暗</td>
<td>晴，微风；水体清澈，可见水华，呈绿色</td>
<td>晴，微风；水体透明度为40 cm</td>
<td>晴，静风，湖面有冰，水面上有水华，呈光黄色</td>
</tr>
<tr>
<td>贡湖湾</td>
<td>微风；水体暗</td>
<td>晴，微风；水草茂盛，水体清澈</td>
<td>晴，水草较多，且有黄色藻类</td>
<td>晴，微风；湖面结冰，水中有许多黑色水草，水较暗</td>
</tr>
</tbody>
</table>

3 结果 (Results)

3.1 不同季节梅梁湾和贡湖湾水体有关背景指标的浓度

不同季节梅梁湾与贡湖湾水体中有关背景指标的浓度如表2所示。表2显示，梅梁湾春、夏、秋、冬4个季节的SS浓度(7月)最高，冬季(1月)最低。且差异较小，仅为18.48 mg·L⁻¹。近年在太湖本研究点的监测结果也显示1)，SS浓度一般也是夏秋季(7月和10月)最高(最高为 51.2 mg·L⁻¹)，冬季(1月)最低(最低为 6.64 mg·L⁻¹)，变幅最大的为2000年，达40 mg·L⁻¹。这种变幅主要是由于梅梁湾属藻类湖区，其蓝藻水华在夏秋季频繁爆发而冬季很少出现。而贡湖湾不同，其SS浓度冬季(1月)最高，夏季(7月)最低，并且变幅较大，大89.14 mg·L⁻¹。贡湖湾SS浓度的这种变化主要与其属草型生态系统有关。夏季温度高，贡湖水草茂盛，湖底的沉积物不易被扰动而悬浮，加上水草对悬浮颗粒物的吸附作用，使得水很清澈。另外，夏季太湖处于丰水期，水量充沛，最终导致SS浓度最低；而冬季水

1) 中国科学院太湖湖泊生态系统研究站年报，2000～2005
草大量死亡，沉积物失去了固定物，并且湖水水量减少，使得SS浓度升高。Chla作为反映水体浮游植物存量的重要指标，其季节变化是比较显著的。表2显示，梅梁湾的Chla浓度夏季（7月）最高，达100.9μg·L⁻¹，秋季最低，仅为14.8μg·L⁻¹，变幅高达18.1μg·L⁻¹；长江口研究点位的监测结果显示，长江湾Chla浓度最高一般出现在夏秋季（7月），最高达130μg·L⁻¹，但最低均出现在冬季（1月），最低仅为1.46μg·L⁻¹，变幅高达128.26μg·L⁻¹。而龟湖湾不同，其最高值出现在春季（4月），夏季（7月）反而最低，仅为3.5μg·L⁻¹，这种反常现象主要是由于龟湖湾夏季温度高，茂盛的水草抑制了风浪对底层的扰动，从而限制了沉积物中营养盐的释放，导致水中浮游植物的现存量因缺乏营养而较少，并且夏季进入炎热季节，水体温度升高，不利于浮游植物的生长繁殖。

表2 不同季节梅梁湾与龟湖湾水体中浮游动植物、Chla、SS的浓度

<table>
<thead>
<tr>
<th>湖区</th>
<th>月份 (季节)</th>
<th>SS (μg·L⁻¹)</th>
<th>Chla (μg·L⁻¹)</th>
<th>浮游动物</th>
<th>Chla (μg·L⁻¹)</th>
<th>密度 (个·L⁻¹)</th>
<th>浮游植物</th>
<th>Chla (μg·L⁻¹)</th>
<th>密度 (个·L⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>梅梁湾</td>
<td>4月 (春季)</td>
<td>31.58 ± 3.56</td>
<td>48.80</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>7月 (夏季)</td>
<td>45.17 ± 2.17</td>
<td>100.90</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>10月 (秋季)</td>
<td>39.62 ± 1.44</td>
<td>14.80</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>1月 (冬季)</td>
<td>26.69 ± 1.36</td>
<td>21.60</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>龟湖湾</td>
<td>4月 (春季)</td>
<td>23.93 ± 3.18</td>
<td>48.50</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>7月 (夏季)</td>
<td>1.41 ± 0.52</td>
<td>3.50</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>10月 (秋季)</td>
<td>12.23 ± 0.61</td>
<td>25.90</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>1月 (冬季)</td>
<td>90.55 ± 0.69</td>
<td>13.50</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

注：-”未测定。

浮游生物对水体生物、物理和化学性质有重要的影响。太湖水体有着数量巨大的浮游动植物。在这次季节调查中，只获取了秋季和冬季的浮游生物数据。结果发现，2个湖区的浮游植物主要以蓝藻门 (Cyanophyta)、绿藻门 (Chlorophyta)、硅藻门 (Bacillariophyta) 和隐藻门 (Cryptophyta) 为主。

表2显示，梅梁湾冬季的浮游植物生物量、密度及Chla浓度均高于春季。产生这种异常现象主要有2方面的原因，首先，冬季温度低，水体结冰，湖水不受风浪的扰动，SS浓度在4个季节中最低（表2），此时，作为藻类湖区的梅梁湾水体中残存的藻类植物由于固着浮游生物浓度的降低变得活跃起来，采样现场也看到湖面有水华；其次，冬季太湖处于枯水期，水量较少，从而导致梅梁湾冬季的浮游植物生物量、密度及Chla浓度均高于秋季。而龟湖湾秋季由于水草中裹有大量藻类，使得其浮游植物密度高于冬季，但生物量却低于冬季，根据其它指标值和现场观察，龟湖湾冬季或秋季浮游植物生物量指标值可能失真。太湖中的浮游动物主要有象鼻溞 (Bosmina)、网纹溞 (Ceriodaphnia)、剑水溞 (Cyclopoidea)、哲水溞 (Calanoida) 和无节幼体 (Nauplia) 等属。2个湖区中，浮游动物的密度和生物量均是秋季远远高于冬季。

3.2 梅梁湾与龟湖湾水体中COC浓度及其差异的季节变化

梅梁湾与龟湖湾作为太湖的2个不同生态类型的典型湖区，其水体中的COC浓度随季节有着明显的变化，并且这2个湖区中COC浓度的差异也表现出随季节而变化的特点。

3.2.1 梅梁湾COC浓度的季节变化

梅梁湾不同季节COC和UOC的浓度变化如图1所示。图1显示，
示，梅梁湾COC、UOC和DOC浓度夏季最高，秋季最低，并且同步增加，同步减少。这反映了季节因素对太湖水体有机碳浓度具有较大影响，也反映了它们具有一定的同源性。当然，季节变化实际上是气象条件（主要是气温、降水和光照）的改变，太湖作为浅水湖泊，其水环境，尤其是浮游生物存量必然受到较大影响（陈伟民等，1998）。本研究中，春季（4月）水体浮游生物复苏，Chla浓度为48.8 μg·L⁻¹，此时COC浓度为1.93 mg·L⁻¹。而在水热条件充沛的夏季（7月），浮游生物活动比较频繁，生产力也较旺盛，使得Chla浓度达100.9 μg·L⁻¹，为一年中的最高值，此时COC浓度大幅升高，为一年中的最高值。到了秋季（10月）浮游生物的活动减弱，Chla浓度仅为14.8 μg·L⁻¹，为一年中的最低，此时COC浓度大幅减少，也为一年中最低。冬季（1月）浮游植物密度和生物量远远高于秋季（10月），且处于枯水期，这可能是冬季各部分有机碳浓度略高于秋季的原因之一，而COC在DOC中的比例而言，秋季最高，春季最低。值得注意的是，梅梁湾水体夏季的SS和DOC浓度都为一年中的最高值（见表2和图1）。这是由于梅梁湾是一个重度富营养化的湖区（朱广伟，2008），夏季蓝藻水华频繁暴发，有着旺盛的生物生产力，藻类植物的光合体与藻体在水体中大量存在，导致悬浮物SS浓度较高；而这些藻类植物腐烂分解的过程中，会产生大量的DOC，使得二者在水体中的浓度都很高。

3.2.2 贡湖湾COC浓度的季节变化

贡湖湾各部分有机碳浓度的季节变化如图2所示。图2显示，贡湖湾COC浓度变化特点与梅梁湾有所不同。春季（4月）水草生长不充分，藻类等浮游植物较多，此时Chla浓度达48.5 mg·L⁻¹，为一年中最高。但是，到了夏季（7月）水草得到充分生长，消耗了体中大量的营养物，抑制了藻类等浮游植物的生长，此时COC浓度小幅下降。到了秋季（10月），水草生长不如夏季旺盛，但藻类很多藻类，水体SS与Chla浓度均高于夏季，COCE浓度比夏季也有所增加，为一年中最高值。冬季（1月）水草大量死亡，使得水体SS浓度大幅增加，浮游生物的生物量和密度、浮游植物的密度及Chla浓度均低于秋季，此时COC浓度也低于秋季，为一年中最低值。贡湖湾COC在DOC中的比例在秋季最高，夏季最低。

![图2 贡湖湾不同季节COC、UOC与DOC浓度的变化](image)

图2 贡湖湾不同季节COC、UOC与DOC浓度的变化

Fig. 2 Changes of contents of COC, UOC and DOC in Gonghu Bay in different seasons

3.2.3 梅梁湾与贡湖湾COC浓度的差异随季节的变化

不同季节梅梁湾与贡湖湾各部分有机碳浓度的比较如图3所示。图3显示，太湖梅梁湾和贡湖
湾 COC 浓度的差异和季节变化有关。春季梅梁湾和
贡湖湾 COC 和 Chla 浓度均无显著差异 (张志平等,
2006a)。采样时观察到的水体特征也大致相同,这
是梅梁湾藻类和贡湖湾水草生长都不充分的状
况。但是,在夏季梅梁湾藻类和贡湖湾水草都充分
生长后, 梅梁湾和贡湖湾的 Chla 浓度分别为
100.9 μg·L⁻¹ 和 3.5 μg·L⁻¹, 悬殊非常大, 表明梅梁
湾浮游植物现在量远高于贡湖湾。这使得梅梁湾
COC 浓度高达 (4.17 ± 1.37) mg·L⁻¹, 而贡湖湾仅
为 (1.80 ± 0.85) mg·L⁻¹, 差异为一年中最少。到了
秋季, 山于贡湖湾的浮游动物和浮游植物的密度和
生物量, 以及 Chla 浓度均远远高于梅梁湾, 贡湖
COC 浓度反超了梅梁湾, 并且两湖湾的差异也
有所削弱。而到了冬季梅梁湾 COC 浓度又略高于
贡湖湾, 此时, 梅梁湾的浮游动物和浮游植物的密度
与生物量, 以及 Chla 浓度均远高于贡湖湾。图 3 还
显示, 除夏季外, 贡湖的 COC 在 DOC 中的比例都高
于梅梁湾, 这种差异在秋季最大。

3.3 COC 浓度和 Chla 的相关关系

通过对太湖梅梁湾与贡湖湾的 COC 及有关
指标的时空分布研究发现, COC 浓度和浮游植物
的现存量密切相关。对 COC 和 Chla 进行 Pearson
相关分析, 表明 COC 和 Chla 显著正相关 (r = 0.81,
p = 0.015)。由于 Chla 指示了浮游植物的现存量, 故
这一结果进一步显示出太湖水体中 COC 浓度和
浮游植物现存量相关。可以说, 浮游植物的生命活
动是太湖水体 COC 的重要来源。这也印证了 Wells

4 结论 (Conclusions)

1) 作为藻型湖区的梅梁湾, 其 COC 浓度夏季最
高, 秋季最低; 而 COC 在 DOC 中的比例而言, 秋季
最高, 春季最低。

2) 作为草型湖区的贡湖湾, 其 COC 浓度在秋季
最高, 冬季最低; 贡湖湾 COC 在 DOC 中的比例在秋
季最高, 夏季最低。

3) 太湖梅梁湾和贡湖湾 COC 浓度的差异和季节
变化有关。夏季梅梁湾 COC 浓度高于贡湖湾, 差
异为一年中最大; 除夏季外, 贡湖的 COC 在 DOC 中
的比例都高于梅梁湾, 这种差异在秋季最大。

4) 太湖水体 COC 浓度和 Chla 浓度显著正相
关, 反映出 COC 浓度和浮游植物的现存量密切相
关, 这表明浮游植物的生命活动是太湖水体 COC 的
重要来源。

责任作者简介: 朱广传 (1972—), 男, 工学博士, 副研究员.
主要从事湖泊富营养化过程及控制机理研究。

References:

Chen W M, Qin B Q. 1998. Temporal and spatial variation
of zooplankton in Meiliang Bay of Taihu Lake in the end of winter and
the beginning of spring and its environmental significance [J].
in the Gulf of Maine [J]. Marine Chemistry, 74: 181—196
Guo Y D, Coleman C H, Santschi P H. 1994. The distribution of
colloidal organic carbon in the Gulf of Mexico [J]. Marine
Chemistry, 15: 105—119
Gustafson O, Gochwend P M. 1997. Aquatic colloids: concepts,
definitions and current challenges [J]. LimnoL Oceanogr., 42:
519—528
oceanic trace metal scavenging evidence from Th isotopes [J]. Mar
Res., 47: 951—992
Huang X W. 2000. Programming and comprehensive treatment of Taihu
Basin [M]. Beijing: Chinese Water Conservancy and Electric
and colloidal DOC production during a phytoplankton bloom [J].
Mar Ecol Prog Ser., 100: 233—244
Martin J M, Dai M H, Cauet G. 1995. Significance of colloids in the
biogeochemical cycling of organic carbon and trace metals in the
Venice Lagoon (Italy) [J]. LimnoL Oceanogr., 40 (1): 199—131
environmental changes of the Taihu Lake [M]. Beijing: Science
Press, 1—3 (in Chinese)
phosphorus in water of Lake Taihu, China [J]. Journal of Lake
metals in Lake Taihu in spring [J]. Environmental Chemistry, 26
organic carbon content and its influencing factors in the waters of
Taihu Lake in spring [J]. China Environmental Science, 26 (2):
166—170 (in Chinese)
wave disturbance on colloidal trace metals in the waters of Taihu
Lake [J]. China Environmental Science, 26 (6): 662—666 (in
Chinese)
(2). 107—114 (in Chinese)
growth as a potential environmental factor [J]. Chinese Journal of
Oceanology and Limnology, 21(3): 270—279
Zhu G W. 2008. Eutrophic status and causing factors for a large, shallow
and subtropical Lake Taihu, China [J]. Journal of Lake Sciences,

中文参考文献:
陈伟民, 秦伯强. 1998. 太湖梅梁湾冬末春初浮游动物时空变化及
其环境意义 [J]. 浙江科学, 10(4): 10—16
黄宜伟. 2000. 太湖流域规划与综合治理 [M]. 北京: 中国水利电力
出版社, 193—194
秦伯强, 高维平, 陈伟民, 等. 2004. 太湖水环境演化过程与机理
[M]. 北京: 科学出版社, 1—3
孙小静, 张志平, 朱伟伟, 等. 2006. 太湖水体中胶体磷含量初探
[J]. 湖泊科学, 18(3): 231—237
张志平, 孙小静, 洪信, 等. 2007. 太湖春季水体中胶体态磷含量及
影响因素分析 [J]. 中国环境科学, 26(2): 232—235
张志平, 孙小静, 楼华, 等. 2006a. 太湖春季水体中藻体有机碳
含量及影响因素分析 [J]. 中国环境科学, 26(2): 166—170
张志平, 朱伟伟, 秦伯强, 等. 2006b. 风波扰动对太湖水体中胶体态
磷含量的影响 [J]. 中国环境科学, 26(6): 662—666
赵新军, 张正, 刘述者. 2001. 天然水体中胶体粒子 [J]. 黄河研究
19(2): 107—114
朱伟伟. 2008. 太湖富营养化现状及原因分析 [J]. 湖泊科学, 20
(1): 21—26