用成组生物效应标志方法定量评价饮用水健康风险

骆键平,李娜,马梅*,王子健,饶凯锋

摘要: 饮用水安全性密切相关着民众的健康,因此相关的水质评价方法也日益受到关注。国家标准中规定的水质分析主要采用化学分析的方法,但该方法不能提供未知污染物的浓度及其所引起的健康影响,而生物效应标志识别则能弥补这一方面的不足。本研究采用一组生物效应标志方法评价自来水水质,包括利用SOS/umu测试评价遗传毒性,利用重组基因酶质分析评价类雌激素作用,利用鼠肝肿瘤试验(H4IE)和诱导物测试评价(Add),受体效应或类二型受体物质总体水平,同时对这些生物毒性引起的人体健康风险进行了定量评价。用上述方法评价了北方某市9个水厂不同季节水样和出水水质。分析结果表明,该市主要自来水厂水质和出水中的直接和间接遗传毒性物质,类雌激素物质效应和生物受体效应物质浓度水平总体较低,风险可接受水平;从处理效率来看,水厂现有工艺对类雌激素物质有很好的去除效果,而对于受体效应物质由于其总体浓度偏高而去除效果不太明显,少数水厂处理后由于消毒副产物的产生等原因,遗传毒性略有升高。由此可见,应用生物效应标志方法能够对水质的安全性做出综合评价,该方法可以作为饮用水安全性评价的重要补充手段。

关键词: 生物效应标志;自来水;遗传毒性;类雌激素作用;Ab受体效应

Quantitatively assessing the health risks of drinking water based on a battery of in vitro bioassays

Luo Jianping, Li Na, MA Mei*, WANG Zijian, RAO Kaifeng

State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085

Received 9 July 2006; revised 21 November 2007; accepted 21 November 2007

Abstract: Water quality assessment has been drawn great attention due to close relationship between water quality and public health. The water quality evaluation has been conducted based on the methods of chemical analysis by which information of health risk is not available. However, bioassays can be used to compensate for these drawbacks. This paper reports a battery of marker assays applied to assess the health risks of drinking water from nine waterworks at different seasons. The results showed that the levels of toxicities including genotoxicity, estrogenic effect and Ah receptor effect of source water and the produced water were low and the health risks were acceptable. Direct and indirect genotoxicity might increase slightly in the produced water after disinfection in some waterworks. All the waterworks showed good removal efficiency for estrogenic substances, but poor removal efficiency for Ah receptor agonists due to their low concentrations. This study demonstrated that the battery of bioassays as an indispensable and complementary tool for water quality assessment can be used to comprehensively evaluate the treatment efficiency of waterworks and provide prompt and useful water quality information.

Keywords: bioassays; drinking water; genotoxicity; estrogenic effect; Ah receptor effect

1 引言 (Introduction)

分析,不能为我们提供暴露于这些低剂量污染物所引起的致癌效应和非致癌效应等健康风险方面的信息。因此,能为我们提供相应生物毒性指标的生
物效应标记方法逐渐成为必不可少的环境监测方法，也是生态和健康风险评估的重要组成部分（U.S. EPA，1998），其中离体生物效应标记具有所需时间短、灵敏度高、准确性强等优点，已广泛地应用于各个环境研究领域。

本文主要运用基于细胞培养和工程菌的体外生物毒性测试来评价北方某市春秋两季 9 个自来水厂原水和出水的遗传毒性效应、雌激素活性效应和 Ah 受体效应。同时，对这些生物毒性引起的健康风险进行了初步的定量评价。

2 材料与方法（Materials and methods）

2.1 样品采集与处理

选择某市 9 个自来水厂（编号分别为 A,B,C, D,E,F,G,H,I）作为研究对象。其中 F 水厂和 I 水厂以地表水作为水源，其余均为地下水作为水源，H厂有两个水源。分别从各水厂的原水和出水采样 20L。样水经富集、洗脱、浓缩、最后置换溶剂为二甲基亚砜 DMSO（99.5% GC, SIGMA），-20℃下保存用于生物毒性测试（骆坚平等，2006；陈盈盈等，2005）。

2.2 生物测试

2.2.1 SOS/umu 测试 本试验选用 Salmonella typhimurium TA1535/PSK1002 菌株，由日本大和公共卫生协会提供。以大鼠肝匀浆（S9）作为体外代谢活化体系，此生物测试在加（+S9）和不加（-S9）两种条件下进行浓度梯度暴露，分别检测毒性和间接遗传毒性效应。具体实验过程参考文献（骆坚平等，2006；Ohno et al.，1996）。实验结果以 R 值表示（R = 酶活性_{S9}/酶活性_{-S9}），当 R≥2.0 时，则表示结果呈阳性，当 1.5 < R< 2 时，结果是可疑阳性。然而，从实验过程中可看出，阳性结果与否与水样的富集量有密切的关系，不同的富集倍数可能得到完全相反的结果。同时，由于具有遗传毒性的物质种类繁多，无法对样品中各种诱导遗传毒性的物质进行定量分析，由此，我们采用阳性质物质 4-硝基咪唑-1-氧化物（4-NQO）的等当量毒性来评价饮用水的致癌风险。基本过程为：首先根据 4-NQO 的致癌剂量效应曲线推算得到 4-NQO 对人的剂量效应曲线，得到对人的致癌危险系数（q = 0.369 kg·d^{-1}·mg^{-1}）。假设样品中存在的物质的致癌效应与 4-NQO 相同，比较实验中粗样品（4-NQO）和样品的酶活值，得到相当于 4-NQO 暴露的毒性当量，从而确定水样的致癌风险大小（Steidler et al., 1984；何文杰，2006）。

2.2.2 重组基因酶联测试 重组基因酶联由英国 Brunel 大学 Sumpter 教授提供，该酶联的主要染色体含有 lac -x 表达基因的质粒（编码 β-半乳糖苷酶）和雌激素受体的 DNA 序列，可间接测定能与雌激素受体发生结合的所有化学品的雌激素活性。

测试方法在参考文献（Routledge et al., 1996）的基础上，改用 96 孔板进行，每板设溶剂对照（DMSO）和阳性对照，每次试验以浓度梯度的 17β-雌二醇（E2）做标准曲线，结果以雌二醇当量（EQ）表示（饶凯锋等，2004）。由于目前环境内分泌干扰物中只对壬基酚的最新测试标准（美国环保局），因此根据文献（Bent et al., 2004）及本实验得到的壬基酚相对 E2 的相对毒性强度（RP; 3 × 10^{-5} ~ 2 × 10^{-3}），本文取 3 × 10^{-3}，把相应 EQ 换算到壬基酚当量，并与美国环保局制定的壬基酚水标准进行比较。

2.2.3 甲肝类菌类（H411E）7-乙基亚胺—3-异烯酰肟（EROD)诱导测试 该测试能专一性地检测具有 Ah 受体效应的化学物质，几乎所有都是疏水性的芳香类化合物，包括多环芳烃（PAHs）、卤代芳烃（HAHs）和芳香胺类物质。

试验所用的甲肝类菌类（H411E）购自北京基础医学实验动物中心，采用 96 孔板测试方法（黎雯等，2001），每板设溶剂对照和阳性对照，以 2,3,7,8-四氯二苯并-对-二恶英（TCDD）系列浓度做标准曲线，结果以 TCDD 毒性当量（TEQ）表示。目前对于此类物质也和基于生物毒性测试的水质标准，参考美
国环保局限定的饮用水中 2,3,7,8-TCDD 最大污染浓度值 30pg·L^{-1} 进行 Ab 受体效应的健康风险评价。

3 结果与分析 (Results and analysis)

3.1 遗传毒性检测结果

表 1 列出了春秋两季各水厂原水、出水遗传毒性检测情况。根据表 1 数据,该市主要水源水和出

表厂水在春季均没有检出阳性遗传毒性结果。在秋季

表中,有 2 个水厂原水中检出出水遗传毒性阳性,有 1 个水厂检出间接遗传毒性阳性,大部分水厂样品的反射直接和间接遗传毒性弱的 R 值均小于

表1 各水厂的遗传毒性测试结果 (SOS/umu 测试,暴露剂量当量: 每口 200mL 水)

<table>
<thead>
<tr>
<th>水厂</th>
<th>测试类型</th>
<th>春季 R 值 (致癌风险)</th>
<th>秋季 R 值 (致癌风险)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>原水</td>
<td>1.2 (7.5 × 10^{-7})</td>
<td>1.0 (4.8 × 10^{-7})</td>
</tr>
<tr>
<td></td>
<td>出水</td>
<td>1.2 (9.9 × 10^{-7})</td>
<td>1.1 (7.1 × 10^{-7})</td>
</tr>
<tr>
<td>B</td>
<td>原水</td>
<td>1.9 (3.5 × 10^{-8})</td>
<td>1.2 (9.9 × 10^{-7})</td>
</tr>
<tr>
<td></td>
<td>出水</td>
<td>1.1 (5.9 × 10^{-7})</td>
<td>1.1 (6.9 × 10^{-7})</td>
</tr>
<tr>
<td>C</td>
<td>原水</td>
<td>1.4 (1.2 × 10^{-8})</td>
<td>1.4 (1.1 × 10^{-8})</td>
</tr>
<tr>
<td></td>
<td>出水</td>
<td>1.2 (9.6 × 10^{-7})</td>
<td>1.0 (4.3 × 10^{-7})</td>
</tr>
<tr>
<td>D</td>
<td>原水</td>
<td>1.2 (9.6 × 10^{-7})</td>
<td>1.1 (7.0 × 10^{-7})</td>
</tr>
<tr>
<td></td>
<td>出水</td>
<td>1.0 (4.8 × 10^{-7})</td>
<td>1.1 (6.9 × 10^{-7})</td>
</tr>
<tr>
<td>E</td>
<td>原水</td>
<td>1.3 (1.1 × 10^{-8})</td>
<td>1.2 (9.5 × 10^{-7})</td>
</tr>
<tr>
<td></td>
<td>出水</td>
<td>1.4 (1.4 × 10^{-8})</td>
<td>1.1 (6.8 × 10^{-7})</td>
</tr>
<tr>
<td>F</td>
<td>原水</td>
<td>1.8 (3.0 × 10^{-8})</td>
<td>1.4 (1.1 × 10^{-8})</td>
</tr>
<tr>
<td></td>
<td>出水</td>
<td>1.5 (1.9 × 10^{-8})</td>
<td>1.5 (2.0 × 10^{-8})</td>
</tr>
<tr>
<td>G</td>
<td>原水</td>
<td>1.1 (8.9 × 10^{-7})</td>
<td>1.3 (9.8 × 10^{-7})</td>
</tr>
<tr>
<td></td>
<td>出水</td>
<td>1.4 (1.2 × 10^{-8})</td>
<td>1.1 (4.9 × 10^{-7})</td>
</tr>
<tr>
<td>H</td>
<td>原水-1</td>
<td>1.1 (9.0 × 10^{-7})</td>
<td>1.7 (2.5 × 10^{-8})</td>
</tr>
<tr>
<td></td>
<td>原水-2</td>
<td>1.0 (4.9 × 10^{-7})</td>
<td>1.2 (8.4 × 10^{-7})</td>
</tr>
<tr>
<td></td>
<td>出水</td>
<td>1.5 (1.8 × 10^{-8})</td>
<td>1.0 (3.1 × 10^{-7})</td>
</tr>
<tr>
<td>I</td>
<td>原水</td>
<td>1.4 (1.3 × 10^{-8})</td>
<td>1.3 (8.9 × 10^{-7})</td>
</tr>
<tr>
<td></td>
<td>出水</td>
<td>1.5 (2.0 × 10^{-8})</td>
<td>1.0 (2.8 × 10^{-7})</td>
</tr>
</tbody>
</table>

注: “-”表示结果为阴性;“+”表示结果为阳性;表中数据表示受试物在此浓度下的致癌风险值。

从不同水厂的处理效率来看, 经处理之后, 出水中遗传毒性有升高的可能。以秋季为例, 9 个水厂

的 6 个水厂(A, B, C, D, E, G, H) 样品的直接遗传毒性同 6 个水厂(B, C, D, E, G, I) 样品的间接

遗传毒性出水比原水高。饮用水原水经水厂处理之后, 遗传毒性效应升高已有大量文献报道(徐风等

, 1994; Ma et al., 2000)。在自然水体中, 引起雌激素效应的主要物质大

3.2 雌激素效应检测结果

在自然水中, 引起雌激素效应的主要物质大
都为天然和人工合成雌激素，另外烷基酚、有机氯农药等物质也有一定的贡献。重组基因酶母测试结果表明(图1)与遗传毒性一样，各水厂原水的类雌激素效应在春秋两季具有不同的变化趋势。两季节配对t检验，p < 0.1)，不同水厂原水中的类雌激素效应水平差异也较大，春季各水厂原水类雌激素效应EEQ在3-107pg·L^{-1}之间(巨基酚当量为0.1-3.6µg·L^{-1})，其中A、C两厂的类雌激素效应较大，EEQ分别为107pg·L^{-1}(巨基酚当量3.6µg·L^{-1})和82pg·L^{-1}(巨基酚当量2.7µg·L^{-1})；对于秋季各原水，其中G厂没有检出，F、I两厂的类雌激素效应较大，EEQ分别为167pg·L^{-1}(巨基酚当量5.6µg·L^{-1})和143pg·L^{-1}(巨基酚当量4.4µg·L^{-1})。

从处理效率来看，目前各水厂的工艺对于引起雌激素效应的物质的去除效果比较理想，绝大多数水厂的出水中类雌激素效应都得到了很好的去除。根据环保局规定淡水中巨基酚小时平均浓度不超过28µg·L^{-1}，4d平均浓度不超过6.6µg·L^{-1}，从检测结果看，各水厂巨基酚当量都没有超过单个巨基酚标准，引起雌激素效应的风险也不大，但部分水厂原水中已接近此标准，应该予以重视。

TEQ分布范围为0.1-5.7pg·L^{-1}，秋季样品TEQ的范围为0.2-2.3pg·L^{-1}(两季节配对t检验，p < 0.1)，参考美国环保局限定的2,3,7,8-TCDD最大污染浓度值30pg·L^{-1}，从检测的结果看，两季节原水的Ah受体效应总体偏低，不存在此类效应物质的污染。

另外，从各水厂的处理效率来看，由于原水中Ah受体效应很低，除春季的H、I两水厂和秋季的E水厂具有较好的处理效果外，其余水厂的处理工艺没有显示对这类物质进一步去除的可能，其中C水厂出水中Ah受体效应反而具有较大的升高，这可能与此水厂的原水水质有关。与上述两种生物毒性一样，对于不同季节，不同水厂的原水Ah受体效应具有不同的变化趋势，处理效率也随着变化。

从图2可以看出，各水厂出水的Ah受体效应分布情况(图2a)。春秋两季各水厂原水、出水的Ah受体效应分布情况如图2所示。春秋各水厂原水Ah受体效应

![图1](image1)

图1 各水厂原水、出水的类雌激素效应分布(“nd”为没有检出)

Fig. 1 Distribution of estrogenic effect at different waterworks

(“nd” no detected)

3.3 Ah受体效应检测结果

春秋两季各水厂原水、出水的Ah受体效应分布情况如图2所示。春季各水厂原水Ah受体效应

![图2](image2)

图2 各水厂原水、出水的Ah受体效应分布

Fig. 2 Distribution of Ah receptor effects at different waterworks

4 结论（Conclusions）

1) 对于遗传毒性效应，某市水厂秋季样品的阳性检出率高于春季，从不同水厂的处理效率来看，经处理之后，由于消毒副产物的产生个别水厂出水中遗传毒性略有升高，其类雌激素效应在不同水厂原水差异较大，在春秋两季也有不同的变化趋势，各水厂对引起雌激素效应的物质的去除效果基本上比较理想，多数水厂的出水中类雌激素效应都得到了很大程度的去除，两季度原水的Ah受体效应总体偏低，不存在此类效应物质的污染。

2) 这3类生物毒性效应所引起的健康风险在
可接受的范围之内，但不限于严格执行水质标准，确保民众饮用水安全的角度来看，水厂需要对这些生物毒性效应进行常年检测，持续发展水处理技术，降低由于饮用水暴露导致的人类致癌风险。

3. 组成生物毒性测试可以作为主要基于化学分析的评价方法的补充手段。

责任作者介绍：马德（1967—），女，中科院生态环境研究中心环境工程学国家重点实验室副研究员，硕士生导师。E-mail：maimei@reces.ac.cn

References:

中文参考文献：

陈圣盈，马梅，赛道建，等。2005。利用组生物测试评估不同深度处理工艺出水的安全性[J]。环境科学，26(1):100—103
方东，蒋卓华，秦瑾。2001。南京市主要饮用水源水中有害污染物的遗传毒性研究[J]。中国环境监测，17(1):2—7
何文杰。2006。安全饮用水保障技术（第1版）[M]。北京：中国建筑工业出版社，952—993
黎文，陈盈，吴文忠。2001。利用离体大鼠肝癌细胞的EROD诱导指示二噁英的复合毒性效应[J]。动物学报，47(1):64—70
骆坚平，马梅，王子健，等。2006。用组生物毒性测试方法评价北方某市饮用水安全性[J]。给水排水，32(8):17—21
颜凯锋，马梅，王子健，等。2004。南方某水厂处理工艺过程中内分泌干扰物的变化规律[J]。环境科学，25(6):123—126
徐风丹，范英，宋枭震，等。1994。我国典型地区饮用水中致变数性表证[J]。环境科学，15(3):1—6