活性炭负载锰氧化物用于吸附甲醛

姜良艳1, 周仕学1,*, 王文超2, 吴峻青1, 卢国俭1

1. 山东科技大学化学与环境工程学院，青岛 266510
2. 山东省环境监测局环境质量检测中心，泰安 271000

Abstract:

KmO4 was loaded on activated carbon by oxidation and then was converted into manganese oxides (MnOx) by heat-treatment. The effects of KMnO4 concentration and heat-treatment temperature on the formaldehyde adsorption capacity of the activated carbon loaded with MnOx were studied. The experimental results showed that the adsorption capacity of activated carbon soaked in 0.097 mol·L-1 KMnO4 solution and subsequently heat-treated at 650 ℃ was up to 5.51 mg·g-1 from a 600 mg·L-1 formaldehyde solution. The XPS and FTIR analyses suggested that formaldehyde was chemisorbed by the carbon and manganese atoms on the surface of the MnOx-loaded activated carbon.

Keywords: formaldehyde, activated carbon, manganese oxide, adsorption, oxidation

1 引言(Introduction)

甲醛是室内空气中的主要污染物之一，具有来源广、毒性大、污染时间长等特点。甲醛对人体的危害取决于其浓度，在低浓度下刺激眼睛黏膜；浓度稍高时刺激呼吸道，引起咳嗽、胸闷、头痛和恶心；浓度更高时引起鼻炎、咽炎、肺气肿、肺癌，甚至死亡。

氧化法可将甲醛完全氧化成为无害的 CO2 和 H2O。所用的氧化剂除了 O3、H2O2 和生物氧化酶以外，还可以使用负载型催化氧化剂。负载型催化氧化剂有选择性好和可再生等优点，活性炭的微孔发达，比表面积大，是良好的催化剂载体。活性炭负载 TiO2 是目前研究较多的负载型催化剂 (王玉芹等，2005; 胡将军等，2004; Fumihide et al., 2003)，但 TiO2 只有在波长小于 387.5nm 的紫外光照射下才能发挥其光催化作用，而太阳光中的紫外光仅占 5%，催化氧化效率低，因此，大多借助外来紫外光源。Yoshika 等 (2002) 研究发现，在室温无光的条件下，金属氧化物 MnO2 与甲醛有很高的反应性，且无 CO、HCOOH 等有害副产物生成。
本文作者以活性炭为载体，先用浸渍法将K\(_2\)MnO\(_4\)浸渍在活性炭上，再经热处理制得负载锰氧化物MnO\(_n\)（1 ≤ x ≤ 2）活性炭。研究了K\(_2\)MnO\(_4\)溶液浓度和热处理温度对其吸附性能的影响。用X射线光电子能谱（XPS）和傅立叶变换红外光谱（FTIR）对负载锰氧化物活性炭的结构进行了表征，探讨了其吸附甲醇的机理。

2 实验材料及方法（Materials and methods）

2.1 实验材料

杏壳活性炭（天津福晨化学试剂厂, 粒状, 分析纯）; 醋酸溶液（烟台三和化学试剂有限公司, 分析纯）; K\(_2\)MnO\(_4\)（莱阳化工实验厂, 分析纯）; MnO\(_n\)（天津泰兴试剂厂, 分析纯）。

测定溶液中甲醇浓度所用的乙酸丙酯、乙酸铵等试剂的纯度符合国家标准 GB18580-2001“室内装饰装修材料——人造板及其制品中甲醛释放量”的要求。

2.2 活性炭负载 MnO\(_n\) 的方法

将 5g 活性炭浸入 40mL 一定浓度的 K\(_2\)MnO\(_4\)溶液中，再置于超声消毒器中消毒 2h，然后取出晾干，再在加热炉中于氮气气氛下加热 0.5h，待冷却后取出，制得负载 MnO\(_n\)活性炭。研究 K\(_2\)MnO\(_4\)浓度和热处理温度对其甲醇吸附量的影响时采用一系列设定值，用于结构表征的负载 MnO\(_n\)活性炭是在 K\(_2\)MnO\(_4\)浓度为 0.079mol·L\(^{-1}\)和热处理温度为 650℃的条件下制备的。

2.3 吸附的方法

1）气相吸附法 在密闭的玻璃容器中，将 1g 吸附剂置于 50mL 浓度为 600mg·L\(^{-1}\)的甲醛溶液上方，再将容器放入 25℃水浴中静置 24h，然后测定溶液中甲醛的浓度，进而计算出吸附剂的甲醛吸附量。

2）液相吸附法 将 1g 吸附剂浸入 50mL 浓度为 600mg·L\(^{-1}\)的甲醛溶液中，后续操作同气相吸附法。

2.4 甲醛吸附量的测定方法

按照国家标准 GB18580-2001 测定溶液中甲醛的浓度，浓度测定时需稀释至 < 15mg·L\(^{-1}\)，然后按式(1)计算吸附剂的甲醛吸附量:

\[
Q = \frac{(A_0 - A) \cdot \text{en}}{m}
\]

式(1)中, Q 为吸附剂的甲醛吸附量 (mg·g\(^{-1}\)); A\(_0\)为空白实验甲醛溶液的吸光度; A 为待测甲醛溶液的吸光度; \(\text{en}\) 为标准曲线斜率 (mg·mL\(^{-1}\)); V 为甲醛溶液的体积 (mL); n 为稀释倍数; m 为吸附剂的质量 (g)。

2.5 吸附剂结构的表征

用美国 PE 公司的 PHI500 型 XPS 仪测定吸附剂的C\(_1\)s, O\(_1\)s 和 Mn 2p 电子结合能, 射线为 AlKa, 发射功率 250W; 用美国 Nicolet 公司的 510P 型 FTIR 仪测定吸附剂的官能团, 制样用 KBr 压片法, 扫描次数 100。

3 结果 (Results)

3.1 吸附率与液相法吸附甲醛效果的比较

在甲醛溶液浓度为 600mg·L\(^{-1}\)时，分别以活性炭为载体的纯 MnO\(_2\)作为吸附剂，对比气相法和液相法的甲醛吸附量，结果见表 1。从表中数据可知，气相法甲醛吸附量大，其液相法吸附量也较大，而液相法操作简便，为此，后两组采用液相法评价吸附剂的甲醛吸附效果。

<table>
<thead>
<tr>
<th>吸附剂</th>
<th>甲醛吸附率 (mg·g(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>气相法</td>
<td>0.53</td>
</tr>
<tr>
<td>液相法</td>
<td>1.68</td>
</tr>
<tr>
<td>活性炭</td>
<td>0.98</td>
</tr>
<tr>
<td>MnO(_2)</td>
<td>7.67</td>
</tr>
</tbody>
</table>

3.2 甲醛浓度对甲醛吸附率的影响

用不同浓度的 K\(_2\)MnO\(_4\)溶液浸渍活性炭，再于 650℃下进行热处理，制得不同 MnO\(_2\)负载量的活性炭，然后测定其甲醛吸附量，K\(_2\)MnO\(_4\)溶液浓度对甲醛吸附量的影响见图 1。由图 1 可见，随着 K\(_2\)MnO\(_4\)浓度
的升高，甲醛吸附量增大，当浓度为 0.079mol·L⁻¹时，甲醛吸附量高达 5.51mg·g⁻¹，是活性炭原样的 3.3 倍。随着 KNO₃ 溶液的进一步升高，甲醛吸附量反而逐渐降低，当 KNO₃ 溶液超过 0.400mol·L⁻¹以后，甲醛吸附量趋于恒定，为 2.83mg·g⁻¹。

3.3 热处理温度对甲醛吸附效果的影响

用浓度为 0.079mol·L⁻¹的 KNO₃溶液浸渍活性炭，然后在不同的温度下进行热处理，热处理温度对负载 MnO₂活性炭吸附甲醛效果的影响见图 2。由图 2 可见，随热处理温度的升高，其甲醛吸附量逐渐增大。当温度为 650℃时，甲醛吸附量高达 5.51mg·g⁻¹，当温度高于 650℃时，甲醛吸附量减小，但仍明显高于活性炭原样的吸附量。

3.4 不同吸附剂的甲醛吸附量的比较

在甲醛溶解浓度为 600mg·L⁻¹时，分别以活性炭原样、经 650℃热处理的活性炭、负载 MnO₂活性炭和纯 MnO₂作为吸附剂，比较其甲醛吸附量，结果见表 2。由表 2 中数据可知，活性炭原样的甲醛吸附量最小，经 650℃热处理的活性炭次之，纯 MnO₂的最大，负载 MnO₂活性炭的甲醛吸附量虽然低于纯 MnO₂的，但与活性炭原样和经 650℃热处理的活性炭相差不大。

<table>
<thead>
<tr>
<th>吸附剂</th>
<th>甲醛吸附量/(mg·g⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>活性炭原样</td>
<td>1.68</td>
</tr>
<tr>
<td>活性炭经 650℃处理</td>
<td>2.57</td>
</tr>
<tr>
<td>负载 MnO₂活性炭</td>
<td>5.51</td>
</tr>
<tr>
<td>纯 MnO₂</td>
<td>7.67</td>
</tr>
</tbody>
</table>

3.5 吸附剂的 XPS 表征

负载甲醛前后的负载 MnO₂活性炭的 XPS 谱图见图 3。图 3 可见，吸附甲醛前 C ls 有两个峰，一个峰值为 285.2eV，是 C—C 键和 C—H 键中 C ls 的峰；另一个峰值为 288.6eV，是 C=O 键中 C ls 的峰。吸附甲醛后 C ls 的 XPS 变为 1 个峰，峰值增大为 289.7eV，是 COO 键中 C ls 的峰。

负 载 MnO₂活性炭吸附甲醛后 O ls 的 XPS 谱图见图 4。图 4 可见，吸附甲醛前 O ls 有两个峰，其峰值分别为 531.7eV 和 536.1eV，分别对应负价
氧和化合态氧的峰；吸附甲醛后 O1s 变为一个峰，峰高为 536.6 eV，为化合态氧的峰。负载 MnO2活性炭吸附甲醛前后 Mn 2p 的 XPS 谱图见图5。由图5可见，Mn 2p3/2 和 Mn 2p1/2 电子结合能，吸附甲醛前分别为 642.9 eV 和 654.6 eV。吸附甲醛后分别增大为 647.2 eV，658.8 eV。

图 5 负载 MnO2活性炭吸附甲醛前 Matal Mn 2p 的 XPS 谱图
Fig. 5 XPS of Mn 2p of activated carbon loaded with MnO2 before and after formaldehyde adsorption

3.6 吸附剂的 FTIR 表征

吸附甲醛后负载 MnO2活性炭的 FTIR 谱图见图6。由图6可见，负载 MnO2活性炭在 580 cm−1 附近出现 MnO2的 Mn—O 键特征吸收峰。

吸附甲醛前，活性炭表面有丰富的含氧官能团，1575 cm−1 处有 C==O 键的吸收峰，1111 cm−1 处有 C—O 键伸缩振动吸收峰。

图 6 负载 MnO2活性炭吸附甲醛前后的 FTIR 谱图
Fig. 6 FTIR spectra of activated carbon loaded with MnO2 before and after formaldehyde adsorption

吸附甲醛后，3550 cm−1 处出现羧基中 O—H 吸收峰，3508 cm−1 处出现酰基吸收峰，2350 cm−1 和 655 cm−1 处出现 CO2 吸收峰（于世林等，2004），1456 cm−1 处出现亚甲基 C—H 弯曲振动峰，719 cm−1 处出现亚甲基 C—H 而内摇摆振动峰（吴刚，2005）。

4 讨论 (Discussion)

KMnO4溶液浓度和热处理温度对负载 MnO2活性炭的甲醛吸附量有重要的影响，KMnO4浓度必须适中。当 KMnO4浓度过高时，活性炭的孔隙被堵塞，会导致其吸附能力降低。再者，热处理温度也必须适中，KMnO4在低湿度下分解程度小，温度过低时会被活性炭中的碳还原为低价态的锰。

负载 MnO2活性炭吸附甲醛前后 C1s 和 O1s 电子结合能的变化表明，甲醛在活性炭表面发生了化学吸附；H2O 在 MnO2的作用下产生的氧自由基将部分甲醛氧化成 HCOOH 及 CO2。

由负载 MnO2活性炭吸附甲醛前后 Mn 2p 的 XPS 谱图可知，Mn 2p3/2 和 Mn 2p1/2 电子结合能，吸附甲醛前非常接近于 MnO2的结合能 642.0 eV、653.0 eV（Lu et al., 2004），这表明 MnO2的主要组分为 MnO2。吸附甲醛后电子结合能增大，说明吸附甲醛后锰原子周围的氧自由基增加，电负性增大，表明甲醛在 MnO2表面发生了化学吸附。

在负载 MnO2活性炭的红外光谱中，出现 MnO2的特征吸收峰，而没有 MnO4−的特征吸收峰 906 cm−1、843 cm−1 和 401 cm−1，表明 KMnO4经过 650℃加热处理后已完全分解，产物以 MnO2为主。吸附甲醛后出现了羧基、CO2 和酰基和亚甲基吸附峰，表明负载 MnO2活性炭吸附甲醛时，在 MnO2作用下 H2O 产生的氧自由基将部分甲醛氧化为 HCOOH 及 CO2，产生的氢自由基将活性炭表面的部分醛型羰基转化为羟基，将部分 C==O 转化为亚甲基。

5 结论 (Conclusions)

1）以活性炭为载体，利用浸渍法制备一定浓度的 KMnO4，负载在活性炭上，以适当的热处理温度下，载体不分解为 MnO2，锰为氧化合物。

2）MnO2与活性炭共同作用，使负载 MnO2活性炭成为一种高效的甲醛吸附剂。当 KMnO4浓度为 0.079 mol•L−1 和热处理温度为 650℃时，制备的负载 MnO2活性炭在 600 mg•L−1 甲醛溶液中的甲醛吸附量高达 5.51 mg•g−1，是活性炭原样的 3.3 倍。
3) XPS and FTIR tests can acquire information about the interaction between formaldehyde and manganese oxide, indicating that formaldehyde interacts with manganese oxide through a chemisorption process, resulting in surface interaction between formaldehyde and manganese oxide, thereby inducing chemical adsorption.

References:

中文参考文献

