The effect of background constituents on the degradation of 2,4-D in aqueous solution by \( \text{O}_3/\text{H}_2\text{O}_2 \) process

YU Yinghui, HOU Yanjun, GAO Jinseng, MA Jun

School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090

Received 15 August 2006; accepted 12 April 2007

Abstract: The effect of background constituents on the degradation of the pesticide 2,4-D (2,4-Dichlorophenoxyacetic acid) by \( \text{O}_3/\text{H}_2\text{O}_2 \) process was investigated. The experimental results showed a better removal efficiency for 2,4-D in tap water than in distilled water. Tert-butanol, a typical free radical inhibitor, significantly decreased the removal rate of 2,4-D. However, \( \text{HCO}_3^- \), usually an inhibitor present in natural water, enhanced the removal of 2,4-D over a certain range. In addition, a certain concentration of humic acid enhanced the removal of 2,4-D from the water, although high doses of humic acid decreased the 2,4-D removal efficiency by \( \text{O}_3/\text{H}_2\text{O}_2 \) oxidation. Certain metal ions in the water such as \( \text{Na}^+ \), \( \text{K}^+ \), \( \text{Mg}^{2+} \), \( \text{Ca}^{2+} \), \( \text{Zn}^{2+} \) had no significant influence toward the removal of 2,4-D from water at low concentrations. However, the efficiency of the \( \text{O}_3/\text{H}_2\text{O}_2 \) oxidation process was decreased when high concentrations of these ions were present. Other metal ions such as cobalt/nickel/cadmium/chronium could enhance the removal of 2,4-D from the water at low concentrations. However, the efficiency of \( \text{O}_3/\text{H}_2\text{O}_2 \) oxidation process was decreased by high \( \text{Co}^{2+} \), \( \text{Ni}^{2+} \), \( \text{Ca}^{2+} \), \( \text{Cr}^{3+} \).

Keywords: ozone; hydrogen peroxide; 2,4-D; background constituents

1 引言（Introduction）

\( \text{O}_3/\text{H}_2\text{O}_2 \)工艺是目前应用于饮用水处理中的一种较为广泛和有效的高级氧化方法，过氧化氢可促进水中臭氧分解产生具有极强氧化能力的羟基自由基，能有效地氧化降解水中的有机污染物（Brunet, 1984; Chen, 1995; Sylvie, 2000). \( \text{O}_3/\text{H}_2\text{O}_2 \)工艺虽然比较成熟，但由于天然水体水质复杂，在具体运行过程中不同水质背景通常会对氧化反应造成一定的影响，因此，分别研究水中各种本底成分对氧化反应的影响十分必要，从而确定是否要对处理水增加必要的预处理措施。水中本底成分主要是某些无机离子（如 \( \text{Mg}^{2+} \), \( \text{Ca}^{2+} \) 和 \( \text{HCO}_3^- \)）和本底有机质（如腐殖酸）。由于天然水体水质复杂，本实验在模拟水反应体系中分别加入天然水体常见的
本底成分进行模拟试验，重点考察不同水体背景、水中常见无机离子和腐殖酸对代表性有机物农药2,4-D降解效率的影响。

2 材料及方法（Materials and methods）

2.1 实验水样的配制

2.1.1 2,4-D标准反应液的配制 研究中使用的2,4-D从佳木斯农药厂购买，使用前选用苯和1,2－二氯乙烷2种有机溶剂进行2次重结晶提纯，纯度达到了99％以上。将2,4-D溶于蒸馏水中，使用前根据需要进行稀释。

2.1.2 过氧化氢溶液的配制 准确移取1mL过氧化氢原液（浓度为30％）于1L容量瓶中，定容至刻度，摇匀备用。

2.2 分析方法

2.2.1 仪器 高压液相色谱(岛津LC-10A VP)，pH计（上海Delta 320 型）。

2.2.2 分析条件 采用高压液相色谱分析溶液中2,4-D的浓度。分离柱为ODS-18柱，检测器为紫外检测器，测量波长为280nm，流动相为70％的乙腈-醋酸水溶液（将醋酸加入高纯水中调至pH值为3左右得到醋酸水溶液），流动相的流速为1mL·min⁻¹。

2.3 实验装置及实验过程

本实验中所设计反应器为鼓泡式接触柱（Bubble contact column），鼓泡式接触柱反应器具有操作简便，传质效率高等优点。反应器具体设计如下：①反应器材料为玻璃；②反应器尺寸为柱高1.5m，外径7.5cm，内径6cm，有效容积为4.6L；③布气装置为玻璃砂管。具体见图1所示。

实验中将3L反应液注入由玻璃制成的反应器中，臭氧气体用纯氧气制得，通过反应器底部的玻璃砂板布气形成微小的气泡与反应液进行充分接触，并通过循环水泵强制循环。实验所需过氧化氢由蠕动泵加入反应体系中，由反应器中部取样分析。臭氧尾气用碘化钾溶液吸收以确定臭氧向水中转移率。每次实验前都将反应柱先用蒸馏水冲洗，再用臭氧预处理3min，然后排空反应柱，再用蒸馏水冲洗2次后进行实验。

3 结果（Results）

3.1 不同水质对O₃/H₂O₂工艺去除蒸馏水中2,4-D效能的影响

实验中分别考察了蒸馏水和自来水背景下O₃/H₂O₂工艺对水中2,4-D的去除效能。试验过程中，O₃总投量为4.65mg·L⁻¹，H₂O₂投加量分别为1、2.4、8mg·L⁻¹，水温为（18±1）℃，pH为5.1～5.4，反应时间为25min。结果如图2所示。从图中可看出自来水本底条件下2,4-D的降解率显著高于蒸馏水条件下的。过氧化氢与氧化的摩尔比为0.3时，自来水本底条件下2,4-D的去除率较蒸馏水本底提高了9％，但是在较高的过氧化氢/氧化摩尔比情况下，自来水和蒸馏水本底的差异不太明显，基本上取得了相似的2,4-D的去除率。

![](图2 不同水质背景对O₃/H₂O₂工艺去除水中2,4-D的影响.png)

Fig. 2 Effect of different water background on the oxidation rate of 2,4-D by the O₃/H₂O₂ process

这种差异显然是由于自来水的本底成分。相对于蒸馏水而言，自来水中各种无机离子、有机物、腐殖酸的浓度甚至pH值均与蒸馏水中有很大差别，可见自来水复杂本底成分总体表现为促进2,4-D氧化降解。初步推测是由自来水水中含有一些能够充当自由基引发剂和促进剂的杂质成分造成的，而当过氧化氢投加量较高时，在蒸馏水和自来水
水中都可以产生较高浓度的自由基,自由基之间发生相互湮灭的反应,导致水中的本底成分对反应没有太大影响。

下面将对自来水水中各本底成分对自由基捕获剂活性的影响,及氧化水中 2,4-D 的具体影响进行逐一详细讨论。

3.2 自由基抑制剂对 O_{3}/H_{2}O_{2} 工艺去除蒸馏水中 2,4-D 效能的影响

一般天然水体中的杂质成分可以被分为自由基引发剂(Initiator)、自由基促进剂 (Promoter) 和自由基抑制剂(Inhibitor)。自由基抑制剂是指那些在水中能够与自由基以很快的速度发生反应,消耗自由基但又不能重新生成自由基,从而使中断了整个自由基链反应的物质。CO_{3}^{2-} 和 HCO_{3}^{-}、叔丁醇都是比较常见的自由基抑制剂。本文以 HCO_{3}^{-} 和叔丁醇作为研究对象,考察了不同浓度的自由基抑制剂对过氧化氢氧化硫氧化去除蒸馏水中 2,4-D 的影响。

3.2.1 叔丁醇对蒸馏水中 2,4-D 去除效能的影响

叔丁醇是一种很好的自由基抑制剂,可以通过与羟自由基发生快速的反应来中断整个自由基链反应,它与羟自由基的反应速率常数为 $6 \times 10^8$ Lmol^{-1}S^{-1}, 而与氧的反应速率常数只有 $3 \times 10^7$ Lmol^{-1}S^{-1}(Gurrol, 1996)。

图 3 为叔丁醇对单独氧化氧化以及过氧化氢氧化氧化的 2,4-D 影响情况。实验条件: O_{3} 总投加量为 7.15 mg·L^{-1}, H_{2}O_{2} 投加量为 1.5 mg·L^{-1}, 水温为 (25±1) °C, 反应时间为 25 min。从图中可以看出, 叔丁醇对过氧化氢氧化氧化降解 2,4-D 有很大的影响,不投加叔丁醇时过氧化氢氧化氧化可以降低 69% 的 2,4-D, 加入 0.5 mg·L^{-1} 的叔丁醇后 2,4-D 的降解率降到了 59%, 叔丁醇投加量增加到 5.50mg·L^{-1} 后 2,4-D 的降解率分别降到了 48% 和 37%。在单氧化氢降解 2,4-D 的实验中, 叔丁醇对其影响要小得多, 加入 5.50mg·L^{-1} 的叔丁醇后使 2,4-D 的降解率也降至 51% 降到了 45% 和 38%。

这说明在过氧化氢氧化氢氧化降解 2,4-D 的实验中羟自由基自由基是主要进行氧化反应的活性物种, 所以自由基捕获剂叔丁醇的加入对其产生了明显的影响, 50 mg·L^{-1} 的叔丁醇使 2,4-D 的降解率与不投加叔丁醇时相比降低了接近 50%。而单独氧化氧化反应中主要起氧化作用的活性物种是氢氧自由基及少部分氢氧自身在水溶液中分解所产生的羟自由基, 因此, 叔丁醇对其影响就小得多。

3.2.2 HCO_{3}^{−} 对蒸馏水中 2,4-D 去除效能的影响

在天然水体中, HCO_{3}^{−} 盐以及 CO_{3}^{2−} 盐是主要存在的无机盐, 在地表水以及地下水中的浓度一般为 50~200mg·L^{-1}, 因此, 研究其对高级氧化过程的影响非常重要。理论上讲, HCO_{3}^{−} 和 CO_{3}^{2−} 都是自由基的抑制剂, 它们与羟自由基的反应如下 (Acever, 1998):

$$
HCO_{3}^{−} + H_{2}O \rightarrow H_{2}O_{2} + CO_{3}^{2−} \cdot \\
K_{HCO_{3}^{−}} = 1.5 \times 10^{17} L\cdot mol^{-1} \cdot s^{-1} \tag{1}
$$

$$
CO_{3}^{2−} + H_{2}O \rightarrow OH^{−} + CO_{2} \cdot \\
K_{CO_{3}^{−}} = 4.2 \times 10^{8} L\cdot mol^{-1} \cdot s^{-1} \tag{2}
$$

虽然 HCO_{3}^{−} 和 CO_{3}^{2−} 一直以来都被认为是典型的自由基抑制剂, 但研究者在实验中却发现它们越来越多的相反现象。马军和 Graham 在研究二价锰对氧化氢降解农药药剂氧化时发现, 高浓度的 HCO_{3}^{−} 对二价锰对氧化氢氧化反应的影响并不大 (Ma, 2000)。Paillard (1991) 和 Logemann (1997) 在研究中也发现了类似的实验现象, 因此推断说催化过程并不遵循自由基反应机理。

本实验主要考察了不同浓度下 HCO_{3}^{−} 对过氧化氢氧化氢氧化降解 2,4-D 的影响。实验条件: O_{3} 总投加量为 7.15 mg·L^{-1}, H_{2}O_{2} 投加量为 1.5 mg·L^{-1}, 水温为 (25±1) °C, 反应时间为 25 min。结果见图 4。由图可以看出, HCO_{3}^{−} 的加入明显提高了 2,4-D 的去除效率。没有 HCO_{3}^{−} 加入时过氧化氢氧化氧化可以去除 69% 的 2,4-D, 当分别向体系中加入 20,40, 60,80 和 200 mg·L^{-1} 的 HCO_{3}^{−} 后, 2,4-D 的去除率分别增加了 77%、89%、90% 和 94%。
为确定是否是因为向体系中投加的 NaHCO₃ 作为一个强碱弱酸盐, 使溶液体系的 pH 值有所提高, 从而导致溶液中 OH⁻ 促进氧分解成为羟基自由基, 而使 2,4-D 的去除率得到提高, 实验中将待处理的 2,4-D 溶液的 pH 值用氢氧化钠溶液调节分别提高到 6.8 和 7.8, 在完全相同的实验条件下做了 2 组平行实验, 2,4-D 的去除率分别为 80% 和 85%, 与图 4 中相应添加 HCO₃⁻ 盐的 2,4-D 去除率 90% 和 94% 相比仍然明显偏低(如表 1 所示)。因此, 可推断 HCO₃⁻ 对过氧化氢催化氧化作用 2,4-D 的促进作用并不完全是 pH 值影响的结果。

| HCO₃⁻ 盐的 | 加入 | 2,4-D 去除率
|-----------|-----|-------------
| 反应液 | 加入 NaOH 的 | 反应液
| 6.8 | 90% | 80%
| 7.8 | 94% | 85%

图 5 为 2007 年 Acero 和 Von Gunten 在过氧化氢催化氧化过程中发现过类似的现象, HCO₃⁻ 的存在促进了有机物的降解。他们分析认为, HCO₃⁻ 和 CO₃²⁻ 和羟基自由基反应生成的 ·OH 波长、CO₃²⁻ 可以与过氧化氢反应生成超氧自由基(O₂⁻·), 超氧自由基与氧进一步反应生成羟基自由基(Acero, 1998)。因此, 在有过氧化氢存在的条件下, HCO₃⁻ 和 CO₃²⁻ 也可以成为羟基自由基的促进剂。

综合以上的实验结果, 分析认为 HCO₃⁻ 对过氧化氢催化氧化作用 2,4-D 具有促进作用, 而不是理论上的抑制作用。原因: HCO₃⁻ 的存在一定程度上增大了水体的 pH 值, 促进了氧的分解从而进一步提高了 2,4-D 的降解率; 二是 HCO₃⁻ 可与过氧化氢反应促进羟基自由基的生成, 从而促进了 2,4-D 的降解。

在实际水体中, 碳酸盐广泛存在, 因此, 高级氧化技术是否容易受到碳酸盐的抑制是十分重要的。过氧化氢催化氧化不受 CO₃²⁻ 及 HCO₃⁻ 的抑制, 这一点有利于在 O₃/H₂O₂ 高级氧化技术在实际水体中的应用和推广。

3.3 腐殖质对 O₃/H₂O₂ 工艺去除氧化水中 2,4-D 效能的影响

作为天然有机物主要成分的腐殖质 (Humic Substance) 是一种广泛存在于水体、土壤中的高分子聚合物, 是水体色度的主要成分。腐殖质相对分子质量范围为 10^2 - 10^6, 大部分是胶体颗粒。一般根据其酸碱溶解度可将腐殖质划分为腐殖酸 (Humic Acid) 、富里酸 (Fulvic Acid) 和腐黑物。天然水体中溶解态腐殖质含量一般在 10 mg·L⁻¹ 左右, 在溶解有机质 (DOM) 中所占比例可达 90%, 是天然水体中主要的有机物, 其处理方法中它是主要去除的对象。

在本实验中以腐殖酸 (HA) 为腐殖质的主要代表成分, 考察其对 2,4-D 催化氧化反应的影响。实验条件: O₃ 总投量为 5.3 mg·L⁻¹, H₂O₂ 总投量为 1.1 mg·L⁻¹, 水温为 (25 ± 1)℃, 反应时间为 2 min, 结果见图 3。从图 3 中考察的几个不同氧酸投加量来看, 可以看出如下结论: 低浓度的腐殖酸 (0.5 2 mg·L⁻¹) 对于 2,4-D 的催化氧化反应没有明显的影响; 较高浓度的腐殖酸 (80 mg·L⁻¹) 对于 2,4-D 的催化氧化反应具有比较明显的促进作用; 高浓度的腐殖酸 (80 mg·L⁻¹) 对于 2,4-D 的催化氧化反应具有比较明显的抑制作用。

腐殖酸主要由 C, H, O, N 和少量的 S, P 等元素构成。
组成。就其结构来讲，它是一种以多元醇和多元酸
作为芳香核心的高聚物，其中芳香核心上有羧基、
酯基、醚基、糖基、肽等成分，核心之间是多种桥键
（如-OH、-CH_2-OH、-OCH_3、-NH_2、-S-S）连
接起来的。含有大量苯环外，还有大量官能团，如
-OH、-COOH、-C-O、-PO_4、-H_2O、-NH_2、-CH_2-，
-SO_3H、-OCH_3等。由于腐植酸化学结构的复杂性和
多样性，其化学结构的不同点与氧化剂可以发生不
同的化学反应，含氧基团、芳香基团可能作为自
由基引发部位，而羧基基团或者可以吸附溶液中自由
基捕获的部位则可以作为自由基清除剂，所以，腐
植酸既可能是自由基反应的引发剂和促进剂也可能是
自由基反应的抑制剂。在实验中腐植酸可通过不同
的反应点与水中的臭氧及羟基自由基发生反应，腐植
酸的浓度决定了其在氧化过程中的角色。

根据上述实验结果推测，在过氧化氢氧化腐植酸
2,4-D的过程中，当腐植酸在水中浓度较低时（0.5-2 mg L^{-1}），其与臭氧及羟基自由基反应的速
率也较小，对羟基自由基的反应速度有所降低。而
当腐植酸浓度增加时（8-20 mg L^{-1}），其与臭氧及羟基自由基的反应速率有所加
快，并且开始大量引发臭氧的分解，开始作为自
由基反应的引发剂和促进剂，但是这个过程总体

<table>
<thead>
<tr>
<th>反应时间 t/min</th>
<th>空白</th>
<th>Na^+、K^+浓度</th>
<th>Mg^{2+}、Ca^{2+}浓度</th>
<th>Zn^{2+}、Cd^{2+}浓度</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>mg L^{-1}</td>
<td>mg L^{-1}</td>
<td>mg L^{-1}</td>
</tr>
<tr>
<td>2</td>
<td>35.88%</td>
<td>33.85%</td>
<td>38.22%</td>
<td>30.17%</td>
</tr>
<tr>
<td>5</td>
<td>45.02%</td>
<td>48.07%</td>
<td>49.57%</td>
<td>41.09%</td>
</tr>
<tr>
<td>15</td>
<td>56.06%</td>
<td>59.18%</td>
<td>60.04%</td>
<td>55.28%</td>
</tr>
<tr>
<td>25</td>
<td>61.07%</td>
<td>62.48%</td>
<td>63.09%</td>
<td>62.07%</td>
</tr>
</tbody>
</table>

表 2 Na^+、K^+、Mg^{2+}、Ca^{2+}、Zn^{2+}对 O_3/H_2O_2 去除腐植酸中 2,4-D 的影响

<table>
<thead>
<tr>
<th>反应时间 t/min</th>
<th>空白</th>
<th>Co^{2+}、Ni^{2+}浓度</th>
<th>Cd^{2+}浓度</th>
<th>Cr^{3+}浓度</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>mg L^{-1}</td>
<td>mg L^{-1}</td>
<td>mg L^{-1}</td>
</tr>
<tr>
<td>2</td>
<td>35.88%</td>
<td>37.94%</td>
<td>46.23%</td>
<td>24.07%</td>
</tr>
<tr>
<td>5</td>
<td>45.02%</td>
<td>49.07%</td>
<td>52.76%</td>
<td>44.29%</td>
</tr>
<tr>
<td>15</td>
<td>56.06%</td>
<td>59.76%</td>
<td>62.07%</td>
<td>56.28%</td>
</tr>
<tr>
<td>25</td>
<td>61.07%</td>
<td>65.57%</td>
<td>66.48%</td>
<td>60.94%</td>
</tr>
</tbody>
</table>

从表 2 和表 3 中可以看出，Na^+、K^+、Mg^{2+}、
Ca^{2+}、Cu^{2+}、Zn^{2+} 在较低浓度时对过氧化氢氧化腐植酸 2,4-D 过程几乎没有影响，而一定量的
Co^{2+}、Ni^{2+}、Cd^{2+}、Cr^{3+} 则在一定程度上加快了 2,4-D
的氧化降解速度。实验中除 Na⁺、K⁺、Mg²⁺、Ca²⁺ 外的其他离子在较高浓度时对氧化过程表现出了不同程度的抑制作用。例如 Cr³⁺ 在水中浓度为 0.6 mg·L⁻¹ 时，反应 5 min 的时候，2,4-D 的去除率为 53%，没有向水中投加 Cr³⁺ 时相同条件下 2,4-D 的去除率为 45%。其它离子如铬、镍、钡、铈均表现出相似的性质。

目前，对于金属离子促进氧化起解反应机理还不不是很明确，Andreadozi 在研究 Mn²⁺ 催化氧化降解草酸时认为，在强酸性条件下 Mn(II) 首先被氧化为 Mn(IV)，Mn(II) 又将 Mn(IV) 还原为 Mn(III)，Mn(III) 可与草酸生成单体络合物，进而生成羟基自由基，催化了氧化反应 (Andreadozi, 1992)。也有人认为金属催化氧化就是由于金属可与有机物生成金属络合物，金属络合物中的金属在氧化还原反应中容易得失电子，从而使金属络合物发生氧化还原反应的能力加强，促进了反应的进行，达到了催化的效果。Davis (2007) 在研究金属催化氧化降解草酸和对氯苯甲酸时发现，Co²⁺、Ni²⁺ 具有催化活性，认为过渡金属对氧化还原反应的催化是由于金属有稳定的氧化态，金属可以迅速地被氧化还原，发生电子转移，从而对氧化还原反应有增进作用。

就本实验而言，所选择的农药 2,4-D 从化学结构而言也是一种有机酸，因此，推测 Co²⁺、Ni²⁺、Cd²⁺、Cr²⁺ 对于氧化草酸催化氧化 2,4-D 的反应具有促进作用的具体机理为：Co²⁺、Ni²⁺、Cd²⁺、Cr²⁺ 与 2,4-D 生成金属络合物，由于几种金属有稳定的多种氧化态，可以快速地被氧化还原发生电子的转移，而对 2,4-D 的氧化降解反应起到了促进的作用。

4 结论（Conclusions)

1）实验结果表明：自来水本底比蒸馏水本底更有利于 O₂/H₂O₂ 工艺去除水中 2,4-D，自由基捕获剂丁醇对于 2,4-D 的氧化降解反应具有比较明显的抑制作用，但是 HCO₃⁻ 及对水中 2,4-D 的催化氧化反应有一定的促进作用。

2）一定浓度的腐殖酸（80, 20, 40 mg·L⁻¹）对于 2,4-D 的催化氧化反应具有比较明显的促进作用，高浓度的腐殖酸（80 mg·L⁻¹）对于 2,4-D 的催化氧化反应具有比较明显的抑制作用。

3）水中金属离子 Na⁺、K⁺、Mg²⁺、Ca²⁺、Cu²⁺、Zn²⁺ 在较轻浓度时对 2,4-D 的降解没有明显影响，在高浓度时有一定的抑制作用：Co²⁺、Ni²⁺、Cd²⁺、Cr²⁺ 在较轻浓度时对 2,4-D 的催化反应有促进作用，高浓度时有抑制作用。

通讯作者简介：马军（1962—），博士生导师，长江学者特聘教授，主要研究方向：水处理。E-mail：majun_hit@sina.com；Tel：0451–86283010。

References:


