Lindane degradation by nitrogen fixing *Anabaena sphaerica* and *Nostoc muscorum*; Degradation characteristics and mechanisms

ZHANG Hangjun*, JIA Xiuying, XUE Dawei, HU Ciming, MA Jun

College of Life and Environmental Science, Hangzhou Normal University, Hangzhou 310036

Received 17 August 2009; received in revised form 23 November 2009; accepted 1 February 2010

Abstract: The degradation of lindane by the nitrogen fixing species *Anabaena sphaerica* and *Nostoc muscorum* was investigated. The removal efficiencies after 5 days for *A. sphaerica* and *N. muscorum* were 66.1% and 69.5%, respectively, at the initial concentration of 0.2 mg L⁻¹. The half-life was 3.19 d for *A. sphaerica* and 3.23 d for *N. muscorum*. At an initial concentration of 0.2 mg L⁻¹, lindane will not inhibit the growth of these cyanobacteria, however, the chlorophyll-a of the cyanobacteria increased 0.82 and 1.36 times, respectively. Both high temperature and high light intensity can increase the degradation rate of lindane. For *A. sphaerica* and *N. muscorum*, the removal efficiency can increase 44.6% or 40.5% when NaNO₃ or N₂ is used as the only nitrogen source. GC-MS analysis demonstrated that the molecular mechanism of lindane degradation in these cyanobacteria involved dechlorination of lindane to γ-pentachlorocyclohexene in the first step.

Keywords: nitrogen-fixing; anabaena; nostoc; lindane; dechlorination

1 引言(Introduction)

林丹(γ-HCH)等有机氯农药具有高脂溶性和低水溶性，广泛残留在水稻土等土壤中，并且能够在稻米中生物累积(Yao et al., 2006; 2007)，对人体产生潜在的健康危害。因此，研究有机氯农药污染水稻土的修复技术对于保障农产品安全具有重要意义。利用土壤中的某些特异性微生物降解有机氯农药是目前主要采用的原位生物修复技术(Zhang et al., 2009)，已有研究表明，能够用于林丹污染土壤修复的物种主要是微生物白腐真菌(Nagpal et al., 2008)和单胞菌(Singh et al., 2009)。此外，这些微生物外，研究还发现，某些固氮蓝藻能够在高温过程中降解有机氯农药(Kuritz et al., 1997; El-Bestawy et al., 2007)。由于固氮蓝藻是伴生于水稻土的重要生物氮肥资源(Peoples et al., 1995)，因此，具有原位生物修复功能的固氮蓝藻具有双重应用价值。鉴于此，本文在研究我国特有固氮蓝藻降
2 材料和方法（Materials and methods）

2.1 实验藻种

固氮鱼腥藻（Anabaena spiroides）和固氮念珠藻（Nostoc muscorum）菌株购自中国科学院武汉水生生物研究所藻种库，藻种编号分别为 181 和 244，所购藻种均处于指数生长期。

2.2 主要试剂和仪器

试剂：林丹（γ-HCH）购自国家环境保护部标准样品研究所，用甲醇稀释成工作液，浓度为 1 mg·L⁻¹；甲醇和正己烷为色谱纯；石油醚等其它试剂均为分析纯，购自国药集团化学试剂有限公司。

仪器：气相色谱-质谱联用仪（6890GC/5975 MSD，美国Agilent公司）；2010气相色谱仪（日本岛津公司）；照度计（上海精密仪器仪表有限公司）；2450型紫外分光光度计（日本岛津公司）；培养架型植物生长室（杭州景是环境科技有限责任公司）。

2.3 实验方法

2.3.1 固氮藻的培养 藻种培养选用 SE 培养基，接种培养基的藻种置于 100mL 锥形瓶中，放于自动控制人工植物生长室，培养温度为 25℃，光照强度为 1995lx，光照比为 12：12h。

2.3.2 固氮藻解吸γ-HCH 的实验方法 取指份数长期藻种，置于锥形瓶中培养，每锥形瓶中加入 BG11 培养基 30mL，藻种 Nostoc muscorum 和 Anabaena spiroides 初始叶绿素含量分别为 37.8 和 36.5mg·L⁻¹。每个锥形瓶中加入溶解于甲醇的 γ-HCH 工作液至初始浓度为 0.2mg·L⁻¹。按培养时间 0.5、1、2、3、4、5d 取样，测定培养基中 γ-HCH 的含量，研究其解吸动力学过程，同时，实验设置不加藻种培养基空白对照组。

固氮藻解吸林丹的过程用一级反应动力学方程描述，半衰期计算公式如下：

\[C_t = C_0 e^{-kt} \]

\[t_{1/2} = \frac{\ln 2}{k} \]

式中，\(C_t \) 为 \(t \) 时刻培养基中农药的残留浓度（mg·L⁻¹）；\(C_0 \) 为林丹的初始浓度（mg·L⁻¹）；\(k \) 为降解速率常数（d⁻¹）；\(t \) 为降解时间（d）；\(t_{1/2} \) 为农药降解 50% 所需要的时间（d）。

2.3.3 γ-HCH 检测方法 参照文献（Kuritz et al., 1997）方法，将降解后的培养基用 10mL 石油醚提取 2 次，合并萃取液，转移至含有 1cm Na₂SO₄ 和 1g 聚乙二醇的固相萃取柱作净化处理，用 15mL 正己烷混合液进行洗脱，收集洗脱液用氮吹仪浓缩至 1mL 待测。γ-HCH 检测采用 GC2100 气相色谱仪，配 ECD 检测器，DB-5 毛细管色谱柱（30m × 0.25mm × 0.25 μm），进样口温度为 250℃，检测器温度为 300℃，程序升温初始温度为 140℃，保留 2min，然后以 10℃·min⁻¹ 的速度升温至 260℃，保持 10min，载气为高纯氩，流速为 1.5 mL·min⁻¹，不分流模式，进样量为 0.1μL。根据标准品的保留时间定性，峰面积外标法定量。方法的检出限为 1ng·L⁻¹，回收率为 91.4%，相对标准偏差为 6.3%。

2.3.4 固氮藻叶绿素含量的检测方法 取不同降解时间的藻种，于 3000r·min⁻¹ 条件下离心 10min，收集藻种，叶绿素 a 含量的检测采用“热乙醇法”（陈宇飞等，2006）。

2.3.5 培养条件对降解效率的影响 设置人工植物生长室的培养温度分别为 25、30 和 35℃，研究温度对固氮藻降解 γ-HCH 的影响；调节藻种的培养光照分别为 75, 1995 和 2960 lx，测量光照强度对固氮藻降解 γ-HCH 的影响；氮源影响实验分别以 NaNO₃ 和 N₂作为唯一氮源。

2.3.6 降解中间产物的气相色谱法的检测方法 取降解溶液 5ml 后的培养基提取液，用 GC-MS (Agilent 6890/5975 MSD) 测定，用 GC-MS 扫描全扫描谱，利用 Agilent 环境分析鉴定。分析检测条件参照文献（Kuritz et al., 1995）。

3 结果（Results）

3.1 固氮鱼腥藻（Anabaena spiroides）和固氮念珠藻（Nostoc muscorum）对林丹的降解效应

林丹降解实验结果如图1所示。由图1可知，在叶绿素含量相当并且林丹起始浓度为 0.2 mg·L⁻¹ 条件下，A. spiroides 和 N. muscorum 均能明显降解林丹，5d 降解效率分别为 66.1% 和 69.5%；而只添加培养基的无藻接种空白组，林丹的浓度基本上无明显变化，表明固氮藻对林丹的降解起着直接作用。根据图 1 结果可知，两种固氨藻对林丹的降解反应均能采用一级反应动力学方程描述。对于 A. spiroides 和 N. muscorum 降解组，其降解反应动力学方程分别为：

\[C_t = C_0 e^{-0.271t} \]

\[R^2 = 0.9905 \]
$C_t = 0.1803e^{-0.2147t}$ ($R^2 = 0.9489$). 根据两者的降解动力学曲线计算可得，A. *sphaerica* 和 *N. muscorum* 对林丹的降解半衰期分别为 3.19d 和 3.23d。以上结果表明，固氮藻 *A. sphaerica* 和 *N. muscorum* 对林丹的降解效果相当，差异并不明显。

3.2 固氮藻降解林丹过程中藻类叶绿素 a 含量的变化规律

固氮藻自身的生长变化与林丹降解具有密切的联系，实验测定了林丹降解过程中两种固氮藻叶绿素 a 的变化规律（图 2）。结果表明，在林丹 0.2 mg·L$^{-1}$ 暴露条件下，两种固氮藻均能正常生长，并且 *N. muscorum* 比 *A. sphaerica* 具有更好的耐受性。

3.3 不同氮源对固氮藻降解林丹效率的影响

不同氮源对固氮藻 *A. sphaerica* 和 *N. muscorum* 降解林丹效率的影响如图 3 所示。由图 3 中可以明显看出，相对于 *N.*, NaNO$_3$ 更有利于固氮藻对林丹的降解，*A. sphaerica* 和 *N. muscorum* 对林丹的 5d 降解率分别增加 44.6% 和 40.5%。表明不同形态氮素作用下，固氮藻细胞内部对林丹的降解有一定的差异性。

图 1 *A. sphaerica* 和 *N. muscorum* 对林丹的降解效应

Fig. 1 Characteristics of lindane degradation by *A. sphaerica* and *N. muscorum*

图 2 *A. sphaerica* 和 *N. muscorum* 降解林丹过程叶绿素 a 变化规律

Fig. 2 Chlorophyll-a concentrations during lindane degradation by *A. sphaerica* and *N. muscorum*

图 3 不同氮源对 *A. sphaerica* 和 *N. muscorum* 降解林丹过程的影响

Fig. 3 Effects of NaNO$_3$ and N$_3$ on lindane degradation by *A. sphaerica* and *N. muscorum*

图 4 光照强度变化对 *A. sphaerica* (a) 和 *N. muscorum* (b) 降解林丹过程的影响

Fig. 4 Effects of light intensity on lindane degradation by *A. sphaerica* (a) and *N. muscorum* (b)
由图 4 可知，*A. sphaerica* 和 *N. muscorum* 对林丹的降解效率均受光照强度的影响，且林丹的降解效率均随着藻类培养光照强度的增强而增加。

3.5 温度变化对固氮藻降解林丹效率的影响

温度变化对固氮藻降解林丹效率的影响结果如图 5 所示。由图 5 可知，随着培养温度的升高，*A. sphaerica* 和 *N. muscorum* 均能明显增强对林丹的降解效果，这可能与高温条件下藻类生物量及生长活性提高有关。

![图 5 温度变化对 *A. sphaerica* (a) 和 *N. muscorum* (b) 降解林丹过程的影响](image)

Fig. 5 Effects of temperature on lindane degradation by *A. sphaerica* (a) and *N. muscorum* (b)

3.6 固氮藻降解林丹中间产物的分析

两种固氮藻降解林丹 5d 后，经离心和石油醚萃取后，进行气相色谱分析。根据 Agilent 质谱工作站的分析结果可知，两种固氮藻 *A. sphaerica* 和 *N. muscorum* 的降解中间产物中均检测到 γ-五氯环己烯（图 6）。

![图 6 *A. sphaerica* (a) 和 *N. muscorum* (b) 降解林丹过程主要代谢产物质谱图](image)

Fig. 6 Mass spectra of the lindane metabolites produced by *A. sphaerica* (a) and *N. muscorum* (b)

4 讨论 (Discussion)

生物修复技术是目前消除有机氯农药等持久性有机污染物的主要方法之一（Fu et al., 2008）。本文研究了从我国水稻土中分离的固氮鱼腥藻 *Anabaena sphaerica* 和念珠藻 *Nostoc muscorum* 对林丹的降解效应和机理。在初始叶绿素 a 浓度为 36mg·L⁻¹，林丹起始浓度均为 0.2mg·L⁻¹ 条件下，*A. sphaerica* 和 *N. muscorum* 均能明显降低林丹，5d 降解率分别为 66.1% 和 69.5%。Benimeli (2008) 研究发现，链霉菌 *Streptomyces* sp. M7 对林丹的最佳降解效率为 56%，铜绿假单胞菌 *Pseudomonas*
aeruginosa ITRC – 5 在最佳降解条件下对林丹降解 98%以上需要 14d。因此，相对于白腐真菌和单胞
菌，固氮蓝藻的降解能力相对较强。

由图 3 可知，固氮藻 A. sphaerica 和 N. muscorum
在降解林丹的过程中，NaNO3 和 N2 两种形态的氮素
作为唯一氮源的影响不同，这可能是由于固氮藻类
利用 N2 构成的利用硝酸盐作为氮源需要动用更复
杂的代谢网络，耗费更多的能量，而在林丹降解开
始时脱去 HCl 以及随后的开环都需要较高的能量
输入，氮气固氮所需能量与降解所需能量之间存在
竞争性，能量的分流必然影响对林丹的降解。因此，
硝态氮作为氮源更容易为林丹的降解提供能量，因
而对林丹的降解效应更明显。

通过还原条件脱去氯化氢而脱氯是林丹发生
降解的主要途径（Badea et al., 2009）。本文采用
GC-MS 研究了 A. sphaerica 和 N. muscorum 降解林
丹过程的中间产物，检测到 γ-五氯环已烯，这表明
林丹在固氮蓝藻降解过程中首先发生了脱 HCl 的
分子反应，这与 Küriz 等 (1997) 报道的固氮蓝藻
PCC7120 降解林丹的起始反应一致，说明固氮蓝藻
细胞内包含有降解林丹的特异性基因或酶，而
有关固氮蓝藻降解林丹的分子生物学等微观机
理有待进一步深入研究。

5 结论 (Conclusions)

1) 固氮鱼腥藻 Anabaena sphaerica 和念珠藻
Nostoc muscorum 均能够有效地降解林丹，对于起始
浓度为 0.2mg·L⁻¹ 的林丹，5d 降解率分别为
66.1% 和 69.5%，降解反应符合一元动力学过程，
其降解半衰期分别为 3.19 和 3.23d；在降解过程
中，两种固氮蓝藻叶绿素 a 含量增加，表明在该起始
剂型下，其生长活性并不受林丹抑制。

2) 升高培养温度和增施光照能够有效地增强
两种固氮藻对林丹的降解能力，硝态氮作为唯一氮
源更能促进林丹的降解，相对于氨气作为氮源，
A. sphaerica 和 N. muscorum 降解林丹的效率分别增
加 44.6% 和 40.5%。

3) 林丹降解中间产物检测到 γ-五氯环己烯，表
明通过还原条件去氯化氢而脱氯是这两种固氮
蓝藻降解林丹的主要分子途径。

参考文献 (References):

γ-hexachlorocyclohexane (Lindane) during reductive
dechlorination by two strains of sulfate-reducing bacteria [J].
Environ Sci Technol, 43; 3155—3161
lindane-contaminated soil by Streptomyces sp. M7 and its effects on
Zea mays growth [J]. Int Biodeter Biodegr, 61; 233—239
陈宇煌, 张升, 虞燕辉. 2006. 浮游植物叶绿素 a 测定的“热乙醇
法”及其测定误差的探讨 [J]. 浮游生物, 18(5); 550—552
Chen Y W, Chen K N, Hu Y H. 2006. Discussion on possible error for
phytolankton chlorophyll-a concentration using hot-ethanol
extraction method [J]. J Lake Sci, 18(5); 550—552 (in Chinese)
environmental cyanobacterial species in bioremediation of lindane-
contaminated effluents [J]. Int Biodeter Biodegr, 59; 180—192
cassette PCR; Cultivation-independent isolation of γ-
hexachlorocyclohexane-degrading genes from soil DNA [J]. Appl
Microbiol Biotechnol, 79:627—632
hexachlorocyclohexane-isomers in contaminated soils [J]. Soil Biol
Biochem, 38;2318—2327
biodegradation of organic pollutants [J]. Appl Environ Microb, 61;
234—238
the cyanobacterium Anabaena sp. Strain PCC7120 depends on the
function of the nitr operon [J]. J Bacteriol, 179;3368—3370
Küritz T. 1999. Cyanobacteria as agents for the control of pollution by
pesticides and chlorinated organic compounds [J]. J Appl
Microbiol, 85;186—192
Nagpal V, Srinivasan M C, Paknikar K M. 2008. Biodegradation of
γ-hexachlorocyclohexane (Lindane) by a non-white rot fungus
condidiobolus 03-1-56 isolated from litter [J]. Indian J Microbiol,
48;134—141
fixation; an efficient source of nitrogen for sustainable agricultural
production [J]. Plant Soil, 174;3—28
Singh A, Lal R. 2009. Sphaingium ummariense sp. nov., a
hexachlorocyclohexane (HCH)-degrading bacterium, isolated from
HCH-contaminated soil [J]. Int J Syst Evol Micr, 59;162—166
dechlorination of p, p’-DDT in acidic paddy soil [J].
Chemosphere, 64;628—633
rice of aged and fresh DD and DDE in soils [J]. Chemosphere,
68;78—84
autofluorescent organophosphates-degrading Stenotrophomonas
sp. With dehalogenase activity for the biodegradation of
hexachlorocyclohexane [J]. Bioresource Technol, 100;3199—3204