均相表面扩散模型(HSDM)在活性炭吸附去除水中典型嗅味物质中的应用

赵艳梅, 于建伟, 郑红, 等. 2007. 均相表面扩散模型(HSDM)在活性炭吸附去除水中典型嗅味物质中的应用[J]. 环境科学学报, 27(12): 1944 ~ 1950

Application of homogeneous surface diffusion model (HSDM) to the removal of typical odor compounds in water by powdered activated carbon

ZHAO Yanmei1,2, YU Jianwei1, ZHENG Hong2, YANG Min1,*, GUO Zhaohai1, ZHANG Litian1
1. State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco - Environmental Sciences, Chinese Academy of Sciences, Beijing 100085
2. School of Materials Science and Technology, China University of Geosciences, Beijing 100083

Received: 9 October 2007; accepted: 12 October 2007

Abstract: Because of the short contact time, it is important to determine the adsorption kinetics of powdered activated carbon (PAC) on applying PAC in waterworks. In this study, the application of homogeneous surface diffusion model (HSDM) to the prediction of removal kinetics of MIB and geosmin was introduced. It was found that the kinetic processes under different PAC doses could be predicted with HSDM through only one set of kinetic experiment. It is possible to predict the dosage of PAC with HSDM, if the concentration of the target compounds, the contact time of PAC in waterworks, and the treatment target are determined.

Keywords: homogeneous surface diffusion model (HSDM); powdered activated carbon; adsorption kinetics; 2-methylisoborneol (MIB); geosmin

1 引言

嗅味是消费者评价饮用水水质的最重要和直接的指标之一。近年来，饮用水中的嗅味问题已经引起越来越多的关注。其中，由2-甲基异莰醇(2-Methylisoborneol，MIB)和土臭素(geosmin)引起的土臭味是常见的嗅味类型(Cook et al., 2001; Young et al., 1996)。MIB和geosmin均可以由粪便代谢产物产生，经常出现在富营养化水体中，其嗅味阈值非常低，为10 ng•L⁻¹左右。一般来说，MIB和geosmin的出现具有明显的季节性，因此，对于这类嗅味物质，投加粉末活性炭(PAC)是一种投资低、见
效快、运行方便灵活的处理方法。

多数情况下，由于条件限制，PAC 投加点均设在水厂内。这样一来，活性炭的吸附接触时间一般在 1 小时左右甚至更短，PAC 对于目标物的吸附量要远低于其平衡吸附量。因此，为准确地确定 PAC 投加量，需要大量的吸附动力学实验。有人利用均相表面扩散模型 (Homogeneous Surface Diffusion Model, HSDM) 成功地对水中痕量污染物的活性炭吸附动力学进行了预测 (Knappe, 1996；Najm et al., 1991)。Gillooly 等 (1998a) 以及 Huang 等 (1996) 发现，该模型可用于对 MIB 及 geosmin 在天然水中的粉末活性炭吸附动力学进行模拟。但是，我国内地还没有进行过类似的尝试。

本研究中利用 HSDM 模型对两种不同的粉末活性炭在不同水质条件下吸附 MIB 和 geosmin 进行了模拟，根据模拟所得的最佳参数值，对不同 PAC 投加量条件下的吸附动力学进行了预测，本研究将对 HSDM 在水厂的实际应用提供科学依据。

2 HSDM 模型（HSDM model）

HSDM 模型假设活性炭的表面均一，外形为圆球状；分子由吸附剂颗粒外表面开始扩散，并沿着孔隙表面到达吸附位点，在传输中忽略 3 个主要的质量传输阻力，即溶液到吸附剂外膜的传输、通过膜的传输以及吸附速率限制 (许保玖, 2000)。利用 Fick’s 第一扩散定律寻求活性碳颗粒内部不同位置的表面浓度，并利用数学模型求得系统中液相浓度随时间改变的变化量。在传输过程中，吸附质利用系统中的浓度梯度由吸附剂外部扩散至孔隙内部；在密闭系统中，液相中吸附质减少的量等于吸附剂表面增加的量。

均相表面扩散模型 (HSDM) 及边界条件可以下列公式表示：

\[
\frac{\partial q}{\partial t} = D \left(\frac{\partial^2 q}{\partial r^2} + \frac{2}{r} \frac{\partial q}{\partial r} \right) \tag{1}
\]

初始条件 (2) 和边界条件 (3)、(4) 为：

\[\begin{align*}
 t = 0, q = 0, & \quad 0 \leq r < R \tag{2} \\
 t = 0, q \to 0, & \quad r = R \tag{3} \\
 r = R, & \quad K \to 0 \tag{4}
\end{align*}\]

式中，q 为活性炭表面吸附溶质的量 (ng·mg⁻¹)；R 为活性炭颗粒半径 (cm)；D 为表面扩散系数 (cm²·min⁻¹)；K 为 Freundlish 等温吸附常数 (ng·mg⁻¹) (L·ng⁻¹)⁻¹/α)

3 实验材料和方法（Materials and methods）

3.1 仪器与试剂

HP6980N/5975 气相色谱/质谱联用仪（美国惠普公司）；SPME 针，57348-U 萃取头，萃取头吸附相材料是 DVB/Carboxen/PDMS (美国 Supelco 公司)；Mastersizer 2000 激光粒度分析仪 (英国 Malvern 公司)；磁力搅拌器 (CI, 河北新机机电工业公司)；玻璃纤维滤膜 (GF/C, Whatman,英国)。

MIB 及 geosmin 标准样品：分别为 10 mg·L⁻¹ 及 2 mg·L⁻¹ 甲醇溶液 (Sigma-Aldrich, 美国)；IPMP 和 IBMP 标准样品：化学纯度 ≥ 98% (Acros organics, 比利时)，使用前 MIB、geosmin、IPMP 和 IBMP 用超纯水配制为浓度为 1 mg·L⁻¹ 的储备液；NaCl (北京化学试剂公司，优级纯)，使用前 450 °C 烘 2 h。

粉末活性炭：实验室中选两种商品煤质粉末活性炭，编号为 NXPAC 及 SXPAC，分别为宁夏泰西活性炭厂及山西新华活性炭厂产品。使用前用超纯水冲洗并在 110 °C 烘干备用。

吸附实验用原水：实验室中所用原水分别为密云水库水 (NXPAC 吸附实验) 及实验室自来水 (SXPAC 吸附实验)。

3.2 实验方法

3.2.1 吸附动力学实验 动力学实验采用有效容积为 2.5 L 的玻璃瓶进行。取储备液 250 mL 于 2.5 L 玻璃瓶中，配成 100 mg·L⁻¹ MIB 和 geosmin 溶液。混合后以振荡的形式加入所需的活性炭，以磁力搅拌器固定转速进行振荡，取样，最长作用时间控制在 360 min，取样后立即用玻璃纤维滤膜过滤去掉其中的活性炭，分析溶液中 MIB 或 geosmin 的浓度。

3.2.2 吸附平衡实验 吸附平衡实验采用批量实验的方法进行。利用相应的原水样配制成浓度为 100 mg·L⁻¹ 的 MIB 及 geosmin 溶液，分别取 100 mL 转移到多个三角瓶中，然后将活性炭以浆液 (浓度为 2 g·L⁻¹) 的形式加入到水样中进行吸附实验，活性炭投量在 2～30 mg·L⁻¹ 之间。将三角瓶密封好后放到全温振荡培养箱中，在 25 °C 条件下振荡进行平衡吸附实验，平衡时间为 3d。3d 后取出样品，立即用玻璃纤维滤膜过滤掉其中的活性炭，测定溶液中剩余的 MIB 及 geosmin 的浓度。

3.2.3 均相表面扩散模型 (HSDM) 模拟 采用 Hsu-Wen Hung (2005) 修改所得的 BATCH 程序作为
计算软件求得 MIB, geosmin 浓度随时间的变化量，并与动态学实验数据进行拟和比较，得到与实验值最相符的 1 组模拟结果。

3.2.4 分析方法 MIB 及 geosmin 采用顶空固相微萃取-气相色谱/质谱法 (HSSPME-GC/MS) 分析检测。样品萃取前，将 SPME 萃取头在 GC-MS 进样口 240 ℃下老化 5 min。在 75 mL 样品瓶中加入 50 mL 水样和 12.5 g NaCl，加入 10 ng·L⁻¹ 的 IBMP 作内标，固定磁力搅拌转速，通过水浴加热控制温度在 65 ℃。将萃取头插入样品瓶顶空萃取，萃取 30 min 后取出，在 GC-MS 进样口热解吸 3 min 后对目标化合物进行分析，其检测限可达到 1 ng·L⁻¹。

GC/MS 工作条件: HP-5 ms (30 m × 0.25 mm × 0.25 μm) 毛细管色谱柱; 70 eV 电子能量; 电子倍增电压: 824 V; 柱头压: 50 kPa; 进样口温度: 240 ℃。

程序升温过程: 起始温度为 40 ℃，以 8 ℃·min⁻¹ 升至 240 ℃，保持 5 min，的升温程序共 32 min。定量分析采用选择离子模式 (SIM) 进行，MIB 及 geosmin 的定量离子碎片 m/z 分别为 95, 112。

4 结果 (Results)

4.1 MIB 及 geosmin 的吸附动力学

所选用的两种 PAC 在不同投量下对 MIB 及 geosmin 的吸附动力学实验结果见图 1。

![图 1 不同活性炭对水中 MIB 及 geosmin 的吸附动力学曲线](image)

图 1 不同活性炭对水中 MIB 及 geosmin 的吸附动力学曲线 (a) NXPAC; (b) SXPAC。

Fig. 1 Adsorption dynamics curve of MIB and geosmin by different PAC (a) NXPAC; (b) SXPAC。

从图 1 可以看出，geosmin 的吸附速度明显要比 MIB 快，这与 Lalezary 等 (1988) 报道的研究结果相符。MIB 的吸附主要发生在前 2h，而 geosmin 的吸附则主要发生在前 75min。对于 NXPAC，在投量为 10 mg·L⁻¹ 时，MIB 和 geosmin 的 2h 吸附率分别为 6h 时的 85% 和 95%，而对于 SXPAC，其 2h 吸附率在 6h 的 75% 和 86%。20 mg·L⁻¹ 投量条件下，MIB 和 geosmin 在接触时间 2h 的去除率分别为 6h 的 85% 与 95%。可以看出，粉末活性炭在去除 MIB 或 geosmin 时，投量越大，其受接触时间的影响越小。

4.2 HSDM 模型参数优化

利用 BATCH 软件可以对模型关系式 1 进行计算。其中，所需输入的参数包括 MIB 或 geosmin 的初始浓度(C₀, ng·L⁻¹)、活性炭颗粒半径(R, cm)、活性炭投加量(M, mg·L⁻¹)、反应器容器体积(V, L)、时间(T, min) 等均为已知参数，Freundlich Isotherm
常数 K ($\text{FREK, (ng \cdot mg^{-1}) \cdot (L \cdot ng^{-1})^{1/n}}$)，$1/n$ (FREN) 可由吸附平衡实验数据结合吸附等温线 (方程式 (5)) 求得。活性炭半径切割系数 (N) 根据 杨采影 (2001) 及 Najm (1996) 等的研究设定为 50。

Freundlich 等温方程式为：

$$Q = kC_{eq}^{1/n}$$

式中，Q 为活性炭对相应物质的平衡吸附量 (ng·mg$^{-1}$)；C_{eq} 为吸附质在溶液中的平衡浓度 (ng·L$^{-1}$)。

Knappe 等 (1998) 提出，$1/n$ 值通常介于 0.1~1.0 之间，若假设 $1/n$ 值为 0.1 至 1 之间的定值，根据方程式 (5) 可计算得到 K 值。而不需要作等温吸附实验。黄敏如 (2003) 通过对 MIB 及 geosmin 在不同原水中吸附动力学的多组模拟，认为 $1/n$ 在 0.3~0.6 之间可得到最佳的模拟效果，当其过大或过小时，预测就开始产生误差。因此，一般可以假设 $1/n$ 值为 0.3~0.6。

D_n 值可通过最小误差法求得，其相应的误差计算公式为：

$$\text{Error} = \sum_{i=1}^{n} \left(C_{i,\text{Calculated}} - C_{i,\text{Experimen}} \right)$$

其中，$C_{i,\text{Calculated}}$ 为时间 t 时拟态物质剩余率 (C_i/C_0) 的拟合值；$C_{i,\text{Experimen}}$ 为时间 t 时拟态物质剩余率 (C_i/C_0) 的实验值。

先利用 HSDM 对 D_n 值的范围进行估算，先利用 HSDM 对 D_n 值的范围进行估算 (数量级一般在 10^{-10} 左右)，再以 D_n 为横坐标，Error 为纵坐标做图，当 Error 值为最小的 D_n 值即为最佳值，图 2 给出了 $1/n = 0.5$ 条件下 D_n 的优化结果。然后，利用此 D_n 值进行不同活性炭投量条件下 MIB 或 geosmin 的吸附动力学曲线模拟和预测。

图 2 表面扩散系数 D_n 的最小误差法的优化

Fig. 2 The optimization of surface diffusion coefficient (D_n) by smallest error method.

图 3 列出了预定 $1/n$ 值 (0.4, 0.5, 0.6), 并利用最小误差法求得最佳 D_n 值后，对不同投量条件下 SXPAC 的吸附动力学模拟结果。其中，MIB 及 geosmin 的初始浓度分别为 108 ng·L$^{-1}$ 及 99 ng·L$^{-1}$。由图 3 可以看出，随着 $1/n$ 值的增大，D_n 值相应减小，这是因为 $1/n$ 通常代表的是吸附质在活性炭上亲和力的大小，而 D_n 值也和活性炭的亲和力大小有关。但是，可以看出当 $1/n$ 在 0.4~0.6 之间时，预测结果与实验结果均比较相符。因此，在没有条件通过等温吸附实验求得参数 $1/n$ 及 K 值时，可设定 $1/n = 0.5$ 进行吸附动力学实验的模拟。$1/n = 0.5$ 时计算所得的相应参数值列于表 1 中。

表 1 $1/n = 0.5$ 时的不同 PAC 的参数 K 值及相应 D_n 值优化结果

<table>
<thead>
<tr>
<th>PAC</th>
<th>$1/n$</th>
<th>K (ng·mg$^{-1}$)·(L·ng$^{-1}$)$^{1/n}$</th>
<th>D_n (cm2·min$^{-1}$)</th>
<th>$1/n$</th>
<th>K (ng·mg$^{-1}$)·(L·ng$^{-1}$)$^{1/n}$</th>
<th>D_n (cm2·min$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SXPAC</td>
<td>0.5</td>
<td>1.10</td>
<td>3.0×10^{-10}</td>
<td>0.5</td>
<td>2.84</td>
<td>3.0×10^{-10}</td>
</tr>
<tr>
<td>NXPAC</td>
<td>0.5</td>
<td>0.98</td>
<td>3.1×10^{-10}</td>
<td>0.5</td>
<td>3.61</td>
<td>3.1×10^{-10}</td>
</tr>
<tr>
<td>NXPAC*</td>
<td>0.33</td>
<td>1.46</td>
<td>2.9×10^{-9}</td>
<td>0.51</td>
<td>4.41</td>
<td>1.77×10^{-10}</td>
</tr>
</tbody>
</table>

*：K 及 $1/n$ 为吸附等温线拟合所得
4.3 NXPAC 的吸附动力学 HSDM 模拟与预测

为验证 HSDM 模型的适用性, 以密云水库水源为例, 在 NXPAC 投量为 10 mg·L⁻¹ 的条件下进行了吸附动力学实验, 预设 1/n 为 0.5, 用 HSDM 对实验结果进行拟合, 分别得到 MIB 及 geosmin 的吸附等温线 (方程式(5)) 以及 yielded K、1/n, 然后进行了模拟, 结果如表 1 和图 5。

根据以上结果, 两种情况下, MIB 对应的 1/n 差异较大, 而 geosmin 对应的 1/n 几乎相等; 图 5 中所示模拟曲线较图 4 均略为上移, 究其原因应该和 1/n 的求法有关, 可能由于 6 h 时未达到完全平衡所致。MIB 达吸附平衡所需时间长, 二者差异大; 而 geosmin 达吸附平衡所需时间短, 二者差异小。不过, 从整个结果来看, 无论
对 MIB 还是 geosmin，只做 1 组动力学进行模拟的结果与实验数据均达到了很好的一致性。

图 4 NXPAC 对密云水库水中 MIB 及 geosmin 的动力学预测结果 (1/n 预测值为 0.5)

Fig. 4 The simulation and prediction of adsorption dynamics curves of MIB and geosmin by NXPAC (1/n was initialized as 0.5)

图 5 NXPAC 对密云水库水中 MIB 及 geosmin 的动力学预测 (1/n 由吸附等温线拟合得为 0.33)

Fig. 5 The simulation and prediction of adsorption dynamics curves of MIB and geosmin by NXPAC (1/n was 0.33 calculated by Freundlich model fitting)

5 结论 (Conclusions)

1) 均相表面扩散模型可以用来模拟 MIB 及 geosmin 的活性炭吸附动力学过程。

2) 对于 1 种原水，设定 Freundlich 常数 1/n 为 0.4 ~ 0.6，可以在只做 1 组吸附动力学实验的条件下，利用均相表面扩散模型，对 MIB 及 geosmin 的吸附动力学过程进行有效的预测。

3) 结合进水中 MIB 或 geosmin 的初始浓度、处理后的目标浓度以及水厂运行中 PAC 的有效接触时间，可推算粉末活性炭的需求量，为水厂粉末炭投加量的设定提供科学依据。

责任作者简介：杨敏（1964 ~），男，工学博士，研究员，博士生导师，国家杰出青年科学基金获得者，主要从事环境微生物和饮用水安全保障技术研究。E-mail：yangmin@roees.ac.cn

References

Hung H W. 2005. Remediation of MTBE-contaminated groundwater using adsorbent-based permeable reactive barriers [D]. Taiwan; Department of Environmental Engineering, National Cheng Kung University, 145—159
Knapp D R U, Matsui Y, Snoeyink V L, et al. 1998. Predicting the
capacity of powered activated carbon for trace organic compounds in nature water [1]. Environ Sci Technol, 32 (11) 1694—1698
Yang F C. 2001. The application of powdered activated carbon for MIB removal in the original water [D]. Taiwan; Department of Environmental Engineering, National Cheng Kung University,56—65 (in Chinese)

中文参考文献:
黄秋茹. 2003. 粒状活性炭吸附原水 Geosmin 与 2-MIB 之研究 [D]. 台湾; 国立成功大学环境工程学系硕士论文, 51—66
许保能. 2000. 给水处理理论 [M]. 北京; 中国建筑工业出版社, 433—434
杨丰诚. 2001. 应用粒状活性炭去除原水中 2-MIB 之研究 [D]. 台湾; 国立成功大学环境工程学系硕士论文, 56—65