海洋沉积物有机碳分析方法中干燥预处理过程人为误差的发现及其意义

Freeze-drying pretreatment improves organic carbon determinations of marine sediments

YU Wenquan1,2,3, ZHONG Shaojun1,.
1. Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071
2. Graduate School of the Chinese Academy of Sciences, Beijing 100039
3. College of Earth Resources and Information, China University of Petroleum, Dongying 257061
Received 25 June 2006; revised 21 January 2007; accepted 7 March 2007

Abstract: Using one fresh hemipelagic and two fresh coastal marine sediment samples collected on the continental slope of the South China Sea and in Jiaodong Bay near Qingdao, China, we compared sample pretreatment schemes of organic carbon determination. By replacing the heat-drying step in the sample pretreatment scheme with a freeze-drying-under-vacuum step, the organic carbon content values of all three samples were more than 20% higher. GC-MS examination of the vapor phases collected during the heat-drying step confirmed the presence of organic carbon in these phases and revealed the composition of this organic carbon. When each sample was subjected to freeze-drying for different times, identical results were obtained and no organic carbon loss was observed. Based on these observations, we believe that there is a large systematic error (> 20%) caused by the heat-drying step in the common sample pretreatment scheme and that this error could be effectively corrected if a freeze-drying-under-vacuum step is used instead. Considering the significance of this error, we believe that some previously published organic carbon data, as well as the scientific understandings that were based on those data, may need to be re-evaluated.

Keywords: Sediment; organic carbon determination; heat-drying; freeze-drying-under-vacuum

Supported by the National Natural Sciences Foundation of China (No. 40736038) and Knowledge Innovation Program of the Chinese Academy of Sciences (No. KZCX3-SW-219)
1 引言 (Introduction)

海洋沉积物或残余颗粒物中的有机碳含量及其变化是研究海洋地球化学过程、海洋碳循环、海洋环境、全球变化的重要测定参数或内容之一。如何对其进行准确的分析测定一直为许多海洋生物地球化学研究工作者所关注。经过几十年的研究，有机碳含量的测定方法从主要依赖手工操作试验发展到仪器检测，从浸蚀法到高温催化消解法和湿化学紫外消解法等，越来越灵敏快速简单，所得数据也越来越精确（Nieuwenhuiize et al., 1994；Ben et al., 1994；Yamamuro et al., 1995；Tam et al., 1998；Leong et al., 1999；Reeves et al., 2002）。但是，最近在不同国家的10个实验室对同一1个海洋沉积物和残余物样品的有机碳含量进行了测定，比较测定结果发现，不同的实验室、不同的前处理过程或方法所得到的测定结果仍存在显著差异（King et al., 1998）。

的样品充分去除水分，从而确保仪器检测的准确性（King et al., 1998；Stephan et al., 2002；Tung et al., 2003；王浩然等，1996）。以上这些工作确定了一套较为成熟的检测方法：将样品封闭采集并冷冻保存，在干燥后进行酸化，酸化后去除酸液而再次干燥以使得 DOC 存留在样品中，再送样于元素分析仪进行分析。但是烘干法是基于沉积物中绝大多数有机碳的沸点高于 100℃，且不会在较低的烘干温度下出现损失；而事实上，低分子量的物质（例如水）会在低于沸点的温度下出现一定量的挥发与升华，尤其是当温度接近沸点时，这种现象表现得更加明显，所以烘干的方法是否能够应用在沉积有机碳的测定试验中是值得商榷的。本文将重点探讨样品酸化后干燥过程中是否存在有机碳的损失这一重要问题，通过对比同意样品采用不同干燥方法（烘干法与冷冻真空法）所得到的数据来系统验证干燥过程对有机碳含量测定的影响。

2 材料与方法 (Materials and methods)

2.1 沉积物的采集与保存

试验中所用到的海洋沉积物采自中国南海北部陆坡和邻近山东省青岛市的胶州湾，其中样品 N-20来南海沉积柱状样 (N21°10.17'E119°28.67'，水深 3260m) 的 465 ~ 470 cm段，该柱状样利用重力采样法采自 2003 年 4月；样品 JZB2-10 和 JZB2-19 分别来自胶州湾沉积柱状样 (N36°00.00'E120°20.40'，水深 7m) 的 24 ~ 26 cm 和 42 ~ 44 cm段，该柱状样为潜水员在 2003 年 9月采用聚氯乙烯管直接潜水插管水下密封获得。采样后将样品马上转移到实验室，按 2cm 间隔分分割装入干净 Zip-Link塑料袋中密封，并置于冰箱中冷冻保存。

2.2 实验室样品处理

所有的实验器皿均用 2mol·L⁻¹的 HNO₃浸泡 24h，然后用蒸馏水冲洗 3次，然后放入烘箱在 60°C条件下烘干。

2.3 样品处理和测试分析方法

2.3.1 样品干燥 3 个沉积物样品均在干燥处理前置于 -20°C 下冷冻 24h (Stephan et al., 2002；Tung et al., 2003；Tanner et al., 1995)。随后取各沉积物样品放入冷冻真空干燥机 (FD1型，北京博医康试验仪器有限公司) 中在 -44°C 和真空度 5Pa 条件下冷冻干燥约 48h，直至水分完全冻干，样品质量不再随冷冻时间变化。冻干后的样品用玛
2.3.2 样品灰化 (TG) 测定 称取约 10mg 冷冻干燥处理后的 JZB2-10, JZB2-19 和 N-20 样品分别放入锡纸包, 然后应用 CHN 元素分析仪 (Flash EA 1112 型, Thermo 公司) 燃烧温度 920 °C 下加 99.995% 的纯氧) 测定沉积物样品的 TC 含量, 为酸化去除无机碳时所加酸量作推测基础。继续研磨研磨成粉末, 过 100 目筛, 再次冻干后放入玻璃瓶中保存于室温下的干燥器中。

2.3.3 样品无机碳酸盐的去除 将约 0.2g 的干燥样品放入事先称重过的玻璃瓶中, 并进行称重, 然后加入 2 mL 的 HCl (1 mol·L⁻¹), 放置 18 h (King et al., 1998), 以确保样品中无机碳酸盐被彻底有效地酸化去除, 使得样品中的碳全部为有机碳 (上一步总碳的测定显示, 样品 JZB2-10, JZB2-19 和 N-20 的总碳含量分别为 3.78%, 2.30% 和 1.29%。加入的酸量足以酸化样品中无机碳。

2.3.4 保存样品的干燥 CHN 元素分析仪只能精确有效地用于干燥沉积物样品的 C, N, H 等元素的测定, 不能直接分析测定湿沉积物样品或含过多水分的沉积物样品。因此, 加酸处理后的样品在测定之前需要去除水分。目前通用的去除水分的方法是对加酸反应后的湿样品进行烘干 (通常选择 60°C 下烘干) (King et al., 1998; Stephan et al., 2002; Hedges et al., 1984)。为了验证 60°C 下烘干能否将有机碳和其它组分有效地保留在样品中, 本研究将平行采用 2 种不同的干燥方法 (热烘干和冷冻真空干燥) 对同一样品进行处理, 以确认热烘干是否造成有机碳的丢失 (将样品均一化后分成多个平行样品, JZB2-10 和 JZB2-19 分别为 26 个平行样品, N-20 分为 16 个平行样品)。

1) 湿样热烘干: 遵循国际目前通用的干燥法, 将各样品的半分化样品放入 DHG-9070A 型烘箱 (上海精密试验设备有限公司) 中, 在 60°C 下烘干 24 h (King et al., 1998), 随后对干燥后的样品进行称重, 然后将样品从小瓶中取出 (粘在瓶壁上的样品也要刮出) 研磨后放入干燥器中保存。

2) 湿样冷冻真空干燥: 将每一平行样品放入冻干机进行 -44°C 下抽真空 (真空度 5 Pa) 48 h 的冻干处理, 随后对干燥后的样品进行称重, 然后将样品从小瓶中取出 (粘在瓶壁上的样品也要刮出) 研磨后放入干燥器中保存。

2.3.5 样品总有机碳 (TOC) 测定 分别称取约 10mg 经过无机碳酸盐酸化去除并干燥 (冷冻干燥或烘干) 的样品放入锡纸包, 然后应用 CHN 元素分析仪 (Flash EA 1112 型, Thermo 公司) 燃烧温度 920°C 下加 99.995% 的纯氧) 测定沉积物样品的总有机碳 (TOC) 含量。

2.4 质量校正

在沉积物总有机碳 (TOC) 的检测过程中, 由于酸的加入和酸碳酸盐的去除会伴随样品质量发生变化, 所以必须对其进行质量校正。在本次试验中, 采用文献方法进行质量校正 (Hedges, 1984; Iperen et al., 1985):

$$TOC = CHN \times \frac{W_0}{W}$$

式中, TOC 为样本的总有机碳含量; W 为酸化后的沉积物总干重; W_0 为酸化前的沉积物总干重; CHN 为元素分析仪所检测到的碳含量。

2.5 丢失有机碳成分的检测

为了进一步证实酸化前热烘干步骤是否造成有机碳的损失及其成分, 我们设计了如图 1 所示的实验系统对沉积物样品热烘干所产生的一系合物进行收集。

![图 1 热烘干挥发分收集实验装置图](image)

图 1 热烘干挥发分收集实验装置图

Fig. 1 Test unit for capturing volatiles from the heat-drying step

2.5.1 萃取 称约 10g 的 JZB2-10 和 JZB2-19 混合样品放入一个密封的烧瓶中, 置于 60°C 的水浴中加热 24 h, 并在其中通入纯 N_2 (99.999%) 将烘出的成分吹入萃取液中。气体从烧瓶中经冷却后导入一根长石英管中, 管内盛藻素纯氯甲烷以萃取挥发组分中的有机物。

2.5.2 空气采样 密封的空烧瓶置于 60°C 的水浴中加热 24 h, 如同前述, 通入纯 N_2, 将烘出的成分吹入管内盛氯甲烷氯苯管以萃取有机组分。

2.5.3 检测 将收集的氯甲烷萃取液用自然挥发法浓缩到 500 μL, 随后应用 Finnigan 型气相色谱分析仪 (GC-MS) (Thermo 公司) 进行其成
3 结果 (Results)

3.1 酸化后不同干燥处理结果的差距

从表 1 可以看出，样品 JZB2-10、JZB2-19 和 N-20 经过酸化后热烘干步骤所得到的 TOC 均值分别为 2.20% ±0.11% , 1.23% ±0.10% 和 0.38% ±0.03%，而这些样品经过酸化后冷冻真空干燥步骤所得到的 TOC 均值分别为 2.93% ±0.08% , 1.63% ±0.07% 和 0.47% ±0.016%，由热烘干法获取的结果分别低于冷冻真空干燥法获取结果的 24.7% 、24.5% 和 20.1%，这一差距明显高于方法本身的标准偏差(5%左右)，表明颗粒有机碳测定方法中样品在酸化后干燥处理方法的不同对测定结果的准确性有着很大的影响，而影响的程度似乎取决于样品的有机碳含量和组成成分。另外值得提及的是，从标准偏差值可以看出，冷冻处理后测定值的精度要高于烘干处理后测定值的精度高(冷冻法均低于 5%，而烘干法均高于 5%)。

<table>
<thead>
<tr>
<th>表 1 酸化后不同干燥处理的样品 TOC 测试结果</th>
</tr>
</thead>
<tbody>
<tr>
<td>表 1 Effects of different drying techniques after acidification</td>
</tr>
<tr>
<td>平行样品</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>7</td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td>9</td>
</tr>
<tr>
<td>10</td>
</tr>
<tr>
<td>11</td>
</tr>
<tr>
<td>12</td>
</tr>
<tr>
<td>13</td>
</tr>
<tr>
<td>平均值</td>
</tr>
<tr>
<td>标准差</td>
</tr>
</tbody>
</table>

由于样品处理过程除了酸化处理后的干燥方法不同外，其它步骤完全相同，因此，同一样品的 2 组 TOC 测试结果的差异只能解释为：(1) 热烘干干燥处理中存在有机碳的丢失；(2)2 种干燥法都存在有机碳的丢失，只是热烘干干燥处理有机碳的丢失远大于冷冻真空干燥过程中有机碳的丢失；(3) 冷冻真空干燥处理有外来有机碳或无机碳的加人(污染)。

我们认为冷冻真空干燥处理有外来有机碳或无机碳的加人的可能性极小。这是因为，一方面，冷冻真空干燥过程是在一个封闭的系统中进行，没有外来有机或无机碳污染源；另一方面，如果是外来污染，污染的程度不应该总是在一个恒定的水平上。因此这种解释基本可以排除。通过这一试验，可以认为在沉积物前处理的热烘干干燥过程中存在着有机碳的丢失。

3.2 沉积物样品热烘干试验

目前在国内应用的沉积物 TOC 测定方法中，对沉积物湿样的干燥也存在不同方法的选择。尽管越来越多的测定选择冷冻抽真空干燥，但已发表的测定结果仍有一部分来自于热烘干法。如果酸化后的热烘干处理能造成沉积物有机碳的丢失，那么对沉积物湿样的酸化前进行的热烘干处理也同样可能造成有机碳的明显丢失。

为了验证酸化前对湿沉积物进行热烘干是否对 TOC 测试结果产生影响，从样品 JZB2-10 和 JZB2-19 中再次取烘干后的 6 个平行样本分别进行 60℃下 24h 烘干，随后的步骤(酸化去无机碳、冷冻真空干燥或热烘干、TOC 检测) 与 2.3.2、2.3.3.2.3.4 节相同。
从表2 中可以看到, 在酸化去无机碳之前对样品进行热烘干处理, 样品 JZB2-10 在酸化后热烘干或冷冻真空干燥测得的 TOC 值基本相同, 分别为 2.40% ± 0.06% 和 2.55% ± 0.05% (其中冻干样品 3 由于偏差过大, 作为误差被人为排除). 样品 JZB2-19 在酸化后热烘干或冷冻真空干燥测得的 TOC 值也同样一致, 分别为 1.24% ± 0.05% 和 1.25% ± 0.04%. 值得注意的是, 这些 TOC 结果与表 1 中酸化后热烘干后所获得的数值(即 2.20% ± 0.11% , 1.23% ± 0.10%) 极为相近. 这些结果表明, 样品酸化前的热烘干将会造成部分有机碳的丢失. 这些丢失的有机碳与样品酸化后热烘干所丢失的有机碳应是相同的. 因此, 无论是酸化前还是酸化后的热烘干都会造成沉积物样品中这部分有机碳的丢失. 而且这一实验也说明了在冻干程序中并没有有机污染的加入.

<table>
<thead>
<tr>
<th>表 2 沉积物样品热烘干 TOC 试验结果</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 2 TOC after heat-drying vs. freeze drying</td>
</tr>
<tr>
<td>平行样品</td>
</tr>
<tr>
<td>----------</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>平均值</td>
</tr>
<tr>
<td>标准差</td>
</tr>
</tbody>
</table>

* 异常点, 不做计算

3.3 丢失有机碳成分的检测

图 2 显示了沉积物样品 60°C 热烘干挥发组分、空白实验和二氯甲烷萃取液的有机物组分. 结果表明, 沉积物中 的戊二醛 (Glutaraldehyde)、苯酚 (Phenol)、十一烷 (Undecane)、十二烷 (Dodecane)、二甲基环乙烯 (Cyclohexene, 2-methyl-)、十五烷 (Pentadecane) 等有机组分会在 60°C 热烘干过程随水挥发掉. 尽管这些有机质的沸点均高于 60°C, 但其熔点相对较低, 仍可在 60°C 条件下出现挥发, 升华现象而造成沉积物有机碳的丢失. 空白实验与二氯甲烷萃取液的检测基本相同, 说明以上这些有机组分来源于沉积物样品本身. 这一结果明确显示了热烘干造成了沉积物样品中有机碳的丢失.

3.4 冻干真空干燥对比实验

以上实验结果表明, 在有机碳测定的样品预处理过程中, 不能出现热烘干的程序, 否则将出现有机成分损失, 造成较大的误差. 然而, 这些实验结果还无
燥对比实验来探讨这一问题。

对比实验采用的是 JZB-16 样品，该样品与 JZB-10 和 JZB-19 来源于同一沉积柱，位于 36~38 cm 处 (JZB-10 和 JZB-19 在前面的试验中消耗殆尽，经充分搅拌均化后，秤出 20 个质量约 1g 的未经任何干燥处理的湿样本，分别置于 20mL 玻璃瓶中，加 5mL 的 HCl (1 mol·L⁻¹)；酸化 18h 后进行冷冻真空干燥，以 5 个样本做平行为 1 组，共分 4 组，分别于冷冻真空干燥 6、12、24 和 48h 后取出，称重后测得有机碳含量，质量校正后为样本含水情况下的有机碳含量 (即沉积物湿润情况下的有机碳含量)。所得结果如表 3 所示。

表 3 不同冻干时间对样品 TOC 比试验结果数据表

<table>
<thead>
<tr>
<th>样本</th>
<th>冻冷真空干燥时间(h)</th>
<th>TOC</th>
<th>平均值</th>
<th>标准差</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6</td>
<td>1.140%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>1.178%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>1.038%</td>
<td>1.097%</td>
<td>6.889%</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>0.998%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>1.129%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>12</td>
<td>1.192%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>12</td>
<td>1.176%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>12</td>
<td>1.117%</td>
<td>1.162%</td>
<td>3.611%</td>
</tr>
<tr>
<td>9</td>
<td>12</td>
<td>1.207%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>12</td>
<td>1.118%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>24</td>
<td>2.123%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>24</td>
<td>2.171%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>24</td>
<td>1.042%</td>
<td>1.164%</td>
<td>7.314%</td>
</tr>
<tr>
<td>14</td>
<td>24</td>
<td>1.129%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>24</td>
<td>2.266%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>48</td>
<td>1.192%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>48</td>
<td>1.140%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>48</td>
<td>1.111%</td>
<td>1.154%</td>
<td>4.135%</td>
</tr>
<tr>
<td>19</td>
<td>48</td>
<td>1.215%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>48</td>
<td>1.111%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

从结果中可以看出，冻干 6h 的样本检测值与后面的 3 批样本检测值相差较大，且值比之低的较多，这是由于干燥不完全，水分含量较高导致仪器检测出现较大误差所致。后 3 批样本的检测值很接近，说明在 6h 的冷冻真空干燥后没有有机碳成分的损失。尽管这不能完全排除在冷冻真空干燥的初期 (即 6h 内) 没有有机碳成分的损失，但我们很难想象任何有机组分在水分还没有完全挥发前就大量挥发丢失。因而，在目前的分析检测系统误差范围内，我们认为对沉积物样品的冷冻真空干燥前处理不会造成有机碳的丢失。

4 讨论 (Discussion)

本研究结果显示，目前国际通用的有机碳测定方法中对沉积物进行烘干燥的前处理步骤会造成有大量的有机碳丢失，从而使有机碳分析测定产生较大的人为误差。解决这一问题的有效方法是在样品前处理过程中使用冷冻真空干燥。因此，为了确保有机碳测定的准确性，建议修改现有的国际通用测定方法，用冷冻真空干燥取代烘干燥步骤。

更重要的是，本研究的分析结果也表明，由于样品烘干燥是沉积物样品 TOC 分析测定的一个常用步骤，导致国际上已发表的科学文献中许多 TOC 数据有可能不准确，存在很大的人为误差 (超过 20%)，因此，对于一系列基于这些 TOC 数据而得出的科学研究结论、理论、假设或模型等，可能有必要在这一 TOC 分析测定误差的背景下重新审查和验证。事实上，有机碳含量及其变化是研究海洋环境、海洋地球化学、海洋碳循环、全球变化的重要测定参数之一。有关 TOC 分析测定数据的不准确性对已有相关海洋研究和全球变化研究工作的影响问题我们将在另一篇论文中进行系统详细的讨论。

最后，需要说明的是，尽管本实验工作局限于海洋沉积物样品，我们认为本研究所发现的问题同样适用于海洋颗粒物、河流湖泊沉积物和其它颗粒物以及土壤的有机碳含量的分析测定。

致谢 (Acknowledgement)：感谢中国科学院海洋研究所王旭晨研究员在 GC-MS 测试工作中的大力帮助。

通讯作者简介：钟铜军 (1963—)，男，理学博士，研究员，博士生导师，研究领域：沉积地球化学。E-mail: shaojun.zhong@gmail.com。

References:
Ben-Dor E, Banin A. 1994. Visible and near-infrared (0.4 – 1.1 um) analysis of arid and semiarid soils [J]. Remote Sensing of Environment, 48(3); 261—274

Reeves J, McCarty G, Mimno T. 2002. The potential of diffuse reflectance spectrometry for the determination of carbon inventories in soils [J]. Environmental Pollution, 116(1);277—284

中英文参考文献：

王浩然, 万国江, 陈业村. 1996. 潮滩沉积物有机碳的仪器分析法 [J]. 重庆环境科学, 18(5);36—38

王金权. 2005. 样品预处理对有机碳同位素分析结果的影响 [J]. 古生物学报, 44(3);472—477